Our results demonstrate that this method is a useful noninvasive technique for assessing skin inflammatory events. In addition, the method is simple and easily applied in a clinical setting, whether on infants or adults.
Despite an increasing knowledge of dandruff and seborrheic dermatitis (D/SD), the pathophysiological understanding is still incomplete but suggests a role of Malassezia yeasts in triggering inflammatory and hyper-proliferative epidermal responses. The objective of this report is to review published literature from in vivo studies of D/SD populations to provide a more complete description of overall scalp health. New biomolecular capabilities establish a depth of pathophysiological understanding not previously achievable with traditional means of investigation. Biomarkers representing inflammation, hyper-proliferation and barrier function are all perturbed by the D/SD condition and robustly respond to therapeutic resolution. These biomarkers can be sampled noninvasively, enabling their use in routine clinical evaluations as either surrogate endpoints or complementary ones to classical signs/symptoms to broaden the etiological learning.
The development of new ingredients and products for the consumer market requires a thorough assessment of their potential for skin sensitization and the possible clinical manifestation of allergic contact dermatitis. The process by which low molecular weight chemicals induce and elicit skin sensitization reactions is complex and dependent on many factors relevant to the ability of the chemical to penetrate the skin, react with protein, and trigger the cell-mediated immune response. These major factors include inherent potency, chemical dose, duration and frequency of exposure, vehicle or product matrix, and occlusion. The fact that a chemical is a contact allergen does not mean that it cannot be formulated into a consumer product at levels well tolerated by most individuals. Many common ingredients (e.g., fragrances, preservatives) are known skin allergens. However, all allergens show dose-response and threshold characteristics. Therefore, one should be able to incorporate these chemicals into products at levels that produce acceptably low incidences of skin sensitization under foreseeable conditions of exposure. The critical exposure determinant for evaluating skin sensitization risk is dose per unit area of skin exposed. Use of this parameter allows for comparative assessments from different types of skin sensitization tests (including cross-species comparisons), and, at least for known potent allergens, there is remarkable similarity in threshold dose/unit area determinations across species. The dose/unit area calculation enables a judgment of the sensitization risk for different product types. This is illustrated using the chemical preservative methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) as a case study.
The immune system may either have a protective role against sunburn and skin cancer or, conversely, promote solar damage. The skin is poised to react to infections and injury, such as sunburn, with rapidly acting mechanisms (innate immunity) that precede the development of acquired immunity and serve as an immediate defense system. Some of these mechanisms, including activation of defensins and complement, modify subsequent acquired immunity. An array of induced immune-regulatory and pro-inflammatory mediators is evident, at the gene expression level, from the microarray analysis of both intrinsically aged and photoaged skin. Thus, inflammatory mechanisms may accentuate the effect of UV radiation to amplify direct damaging effects on molecules and cells, including DNA, proteins, and lipids, which cause immunosuppression, cancer, and photoaging. A greater understanding of the cutaneous immune system's response to photo-skin interactions is essential to comprehensively protect the skin from adverse solar effects. Sunscreen product protection measured only as reduction in redness (current "sun" protection factor) may no longer be sufficient, as it is becoming clear that protection against UV-induced immune changes is of equal if not of greater importance. Greater knowledge of these processes will also enable the development of improved strategies to repair photodamaged skin.
Conducting a sound skin sensitization risk assessment prior to the introduction of new ingredients and products into the market place is essential. The process by which low-molecular-weight chemicals induce and elicit skin sensitization is dependent on many factors, including the ability of the chemical to penetrate the skin, react with protein, and trigger a cell-mediated immune response. Based on our chemical, cellular and molecular understanding of allergic contact dermatitis, it is possible to carry out a quantitative risk assessment. Specifically, by estimating the exposure to the allergen and its allergenic potency, it is feasible to assess quantitatively the sensitization risk of an ingredient in a particular product type. This paper focuses on applying exposure-based risk assessment tools to understanding fragrance allergy for 2 hypothetical products containing the fragrance allergen cinnamic aldehyde. The risk assessment process predicts that an eau de toilette leave-on product containing 1000 ppm or more cinnamic aldehyde would pose an unacceptable risk of induction of skin sensitization, while a shampoo, containing the same level of cinnamic aldehyde, would pose an acceptable risk of induction of skin sensitization, based on limited exposure to the ingredient from a rinse-off product application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.