Photodynamic therapy (PDT) is emerging as a promising non-invasive treatment for cancers. PDT involves either local or systemic administration of a photosensitizing drug, which preferentially localizes within the tumor, followed by illumination of the involved organ with light, usually from a laser source. Here, we provide a selective overview of our experience with PDT at Case Western Reserve University, specifically with the silicon phthalocyanine photosensitizer Pc 4. We first review our in vitro studies evaluating the mechanism of cell killing by Pc 4-PDT. Then we briefly describe our clinical experience in a Phase I trial of Pc 4-PDT and our preliminary translational studies evaluating the mechanisms behind tumor responses. Preclinical work identified (a) cardiolipin and the anti-apoptotic proteins Bcl-2 and Bcl-xL as targets of Pc 4-PDT, (b) the intrinsic pathway of apoptosis, with the key participation of caspase-3, as a central response of many human cancer cells to Pc 4-PDT, (c) signaling pathways that could modify apoptosis, and (d) a formulation by which Pc 4 could be applied topically to human skin and penetrate at least through the basal layer of the epidermis. Clinical-translational studies enabled us to develop an immunohistochemical assay for caspase-3 activation, using biopsies from patients treated with topical Pc 4 in a Phase I PDT trial for cutaneous T-cell lymphoma. Results suggest that this assay may be used as an early biomarker of clinical response.
This study indicates that chronic poor sleep quality is associated with increased signs of intrinsic ageing, diminished skin barrier function and lower satisfaction with appearance.
The immune system may either have a protective role against sunburn and skin cancer or, conversely, promote solar damage. The skin is poised to react to infections and injury, such as sunburn, with rapidly acting mechanisms (innate immunity) that precede the development of acquired immunity and serve as an immediate defense system. Some of these mechanisms, including activation of defensins and complement, modify subsequent acquired immunity. An array of induced immune-regulatory and pro-inflammatory mediators is evident, at the gene expression level, from the microarray analysis of both intrinsically aged and photoaged skin. Thus, inflammatory mechanisms may accentuate the effect of UV radiation to amplify direct damaging effects on molecules and cells, including DNA, proteins, and lipids, which cause immunosuppression, cancer, and photoaging. A greater understanding of the cutaneous immune system's response to photo-skin interactions is essential to comprehensively protect the skin from adverse solar effects. Sunscreen product protection measured only as reduction in redness (current "sun" protection factor) may no longer be sufficient, as it is becoming clear that protection against UV-induced immune changes is of equal if not of greater importance. Greater knowledge of these processes will also enable the development of improved strategies to repair photodamaged skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.