Photodynamic therapy (PDT) is emerging as a promising non-invasive treatment for cancers. PDT involves either local or systemic administration of a photosensitizing drug, which preferentially localizes within the tumor, followed by illumination of the involved organ with light, usually from a laser source. Here, we provide a selective overview of our experience with PDT at Case Western Reserve University, specifically with the silicon phthalocyanine photosensitizer Pc 4. We first review our in vitro studies evaluating the mechanism of cell killing by Pc 4-PDT. Then we briefly describe our clinical experience in a Phase I trial of Pc 4-PDT and our preliminary translational studies evaluating the mechanisms behind tumor responses. Preclinical work identified (a) cardiolipin and the anti-apoptotic proteins Bcl-2 and Bcl-xL as targets of Pc 4-PDT, (b) the intrinsic pathway of apoptosis, with the key participation of caspase-3, as a central response of many human cancer cells to Pc 4-PDT, (c) signaling pathways that could modify apoptosis, and (d) a formulation by which Pc 4 could be applied topically to human skin and penetrate at least through the basal layer of the epidermis. Clinical-translational studies enabled us to develop an immunohistochemical assay for caspase-3 activation, using biopsies from patients treated with topical Pc 4 in a Phase I PDT trial for cutaneous T-cell lymphoma. Results suggest that this assay may be used as an early biomarker of clinical response.
The association between ultraviolet radiation (UVR) exposure and both skin cancer and photo-aging is well documented. In addition to the conventional organic-chemical and physical-mineral type sunscreens, other non-sunscreen protective strategies have been developed. These include topically applied botanical extracts and other antioxidants as well as topical DNA repair enzymes. Standard terms of photoprotection such as sun protection factor (SPF) do not accurately reflect the photoprotection benefits of these materials. For example, in spite of minimal SPF, tea extract containing polyphenols such as (-)-epigallocatechin-3-gallate (EGCG) has been shown to protect against UV-induced DNA damage and immune suppression, in part through its ability to reduce oxidative stress and inhibit NF-kB. The addition of botanical antioxidants and vitamins C and E to a broad-spectrum sunscreen may further decrease UV-induced damage compared with sunscreen alone. These agents have been shown to enhance protection against UV-induced epidermal thickening, overexpression of MMP-1and MMP-9, and depletion of CD1a(+) Langerhans cells. Non-sunscreen materials such as botanical extracts, antioxidants, and DNA repair enzymes can contribute value when applied topically to human skin in vivo.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 56-59; doi:10.1038/jidsymp.2009.14.
Background Photodynamic therapy (PDT) is a non-invasive treatment for non-melanoma skin cancer. However, PDT systems currently used clinically have limitations such as pain and superficial tissue penetration. The silicon phthalocyanine Pc 4 is a second-generation photosensitizer with peak absorption in the far red at 675 nm. Objective To assess the safety and tolerability of topically applied Pc 4 followed by red light (Pc 4-PDT) in treating cutaneous neoplasms. Study Design/Materials and Methods Forty three adults with a diagnosis of neoplasms including actinic keratoses, Bowen's disease, squamous cell carcinoma, basal cell carcinoma, or mycosis fungoides were treated with a single administration of Pc 4-PDT and followed for 14 days. The study utilized a light and Pc 4 dose escalation design in sequential groups of three subjects each. Results Pc 4-PDT was well tolerated with no significant local toxicity or increased photosensitivity. It has promising biologic effects, particularly in mycosis fungoides where 14 of 35 subjects demonstrated a clinical response, which correlates with Pc 4-PDT-induced apoptosis, as measured by increased active caspase-3 in the treated skin lesions. Conclusions Pc 4-PDT is a safe and tolerable treatment modality that effectively triggers apoptosis in cutaneous neoplasms such as mycosis fungoides. Lasers Surg. Med. 42:728-735, 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.