Chronic inflammation is at least partially mediated by the chemokine-mediated attraction and by the adhesion molecule-directed binding of leukocytes to the activated endothelium. Therefore, it is therapeutically important to identify anti-inflammatory compounds able to control the interaction between leukocytes and the endothelial compartments of the micro- and macrocirculation. When testing novel drug candidates, it is, however, of the utmost importance to detect side effects, such as potential cytotoxic and barrier-disruptive activities. Indeed, minor changes in the endothelial monolayer integrity may increase the permeability of small blood vessels and capillaries, which, in extreme cases, can lead to edema development. Here, we describe the development of a high-throughput screening (HTS) platform, based on AlphaLISA technology, able to identify anti-inflammatory nontoxic natural or synthetic compounds capable of reducing tumor necrosis factor (TNF)-induced chemokine (interleukin [IL]-8) and adhesion molecule (ICAM-1) expression in human lung microvascular endothelial cells. Quantification of cell membrane-expressed ICAM-1 and of cell culture supernatant-associated levels of IL-8 was analyzed in HTS. In parallel, we monitored monolayer integrity and endothelial cell viability using the electrical cell substrate impedance sensing method. This platform allowed us to identify natural secondary metabolites from cyanobacteria, capable of reducing ICAM-1 and IL-8 levels in TNF-activated human microvascular endothelial cells in the absence of endothelial monolayer barrier disruption.
Celiac disease (CD) is a chronic inflammatory condition caused by the ingestion of gliadin-containing food in genetically susceptible individuals. Undigested peptides of gliadin exert various effects, including increased intestinal permeability and inflammation in the small intestine. Although many therapeutic approaches are in development, a gluten-free diet is the only effective treatment for CD. Affecting at least 1% of the population in industrialized countries, it is important to generate therapeutic options against CD. Here, we describe the establishment of a high-throughput screening (HTS) platform based on AlphaLISA and electrical cell-substrate impedance sensing (ECIS) technology for the identification of anti-inflammatory and barrier-protective compounds in human enterocytes after pepsin-trypsin-digested gliadin (PT-gliadin) treatment. Our results show that the combination of these HTS technologies enables fast, reliable, simple, and label-free screening of IgY antibodies against PT-gliadin. Using this platform, we have identified a new chicken anti-PT-gliadin IgY antibody as a potential anti-CD agent.
The optical design for an LEDs-based microplate reader that can perform fluorescence intensity (top and bottom), absorbance, luminescence and time-resolved fluorescence measurements is described. The microplate reader is the first microplate reader in the marketplace that incorporates LEDs as excitation light sources. Absorbance measurements over the 0–3.5 optical density range for caffeine solution are presented. Additionally, fluorescence intensity readings collected at 535 and 625 nm from a green and a red RediPlateTM are reported. Furthermore, fluorescence decay lifetime measurements obtained for Eu (europium) and Sm (samarium) standard solutions using 370 nm excitation are presented. The microplate reader detection limits for the fluorescence intensity top, fluorescence intensity bottom, fluorescence polarization and time-resolved fluorescence modes are 1.5 fmol 100 µL−1 fluorescein (384-well plate), 25 fmol 100 µL−1 fluorescein (384-well plate), 5 mP at 10 nM fluorescein (black 384-well plate) and 30 amol 100 µL−1 europium solution (white 384-well plate), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.