Relaxin is a potent inhibitor of TGF-beta1-induced extracellular matrix (ECM) synthesis and secretion as well as fibroblast activation. Furthermore, it induces ECM degradation by induction of MMP-2 and MMP-9. These effects are mediated, at least in part, by inhibition of TGF-beta1 signaling.
Plasma exchange (PE) is used for blood purification to modulate proteins involved in pathological processes. As the number of patients receiving PE treatment and the heterogeneity of the underlying diseases is steadily increasing, we evaluated the most frequent complications and analyzed causes leading to adverse reactions. 883 PE procedures in 113 patients between the years 2000 to 2006 were retrospectively analyzed with respect to complications. Additionally, underlying diseases and settings of PE procedure were analyzed to identify high-risk patients and respective PE settings. A total of 226 adverse reactions were recorded (25.6% of all PE procedures). Most complications were mild (n = 121, 13.7%) or moderate (n = 98, 11.0%). In seven cases (n = 7, 0.7%), severe, life-threatening adverse events were induced by PE either due to severe allergic reactions (n = 4, 0.5%) or to sepsis (n = 3, 0.3%). Patients with neurologic diseases had a significantly higher risk to develop complications compared to those with internal diseases (P = 0.013). This was due to a higher rate of PE associated adverse events (in particular hypotension) and complications associated with vascular access. Among patients from internal medicine those with hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) had the highest risk to develop complications. Patients with neurological diseases compared to those with medical conditions and patients with HUS/TTP compared to those with other diseases had a higher risk to develop complications. However, severe adverse events are rare. Thus, PE seems to be a safe and recommendable procedure.
Progression of chronic kidney disease remains a principal problem in clinical nephrology and there is a pressing need for novel therapeutics and biomarkers. Aberrant promoter CpG island methylation and subsequent transcriptional silencing of specific genes have emerged as contributors to progression of chronic kidney disease. Here, we report that transcriptional silencing of the Ras-GTP suppressor RASAL1 contributes causally to progression of kidney fibrosis and we identified that circulating methylated RASAL1 promoter DNA fragments in peripheral blood correspond with levels of intrarenal levels of RASAL1 promoter methylation and degree of fibrosis in kidney biopsies, enabling non-invasive longitudinal analysis of intrarenal CpG island methylation.Retrospective analysis of patients with hypertensive nephrosclerosis revealed that circulating methylated RASAL1 promoter DNA fragments in peripheral blood decrease with Dihydralazine treatment in patients with hypertensive nephrosclerosis, and provided evidence that low-dose Dihydralazine delays decline of excretory kidney function, whereas Dihydralazine at standard doses had no protective effect. We demonstrate that the protective effect of Dihydralazine is due to induction of endogenous Tet3/Tdg-mediated DNA-de-methylation activity reversing aberrant promoter CpG island methylation, while HIF1α induction at standard doses counterbalances its protective activity. We conclude that RASAL1 promoter methylation is a therapeutic target and a biomarker of renal fibrosis. Our study suggests that therapeutic use of low-dose Dihydralazine in patients with chronic kidney disease and fibrosis deserves further consideration.
BackgroundIn multiple sclerosis relapses refractory to intravenous corticosteroid therapy, plasma exchange is recommended. Immunoadsorption (IA) is regarded as an alternative therapy, but its efficacy and putative mechanism of action still needs to be established.MethodsWe prospectively treated 11 patients with multiple sclerosis who had optical neuritis and fulfilled the indications for apheresis therapy (Trial registration DE/CA25/00007080-00). In total, five IA treatments were performed using tryptophan-IA. Clinical activity (visual acuity, Expanded Disability Status Scale, Incapacity Status Scale), laboratory values and visual evoked potentials were measured before, during and after IA, with a follow-up of six months. Moreover, proteomic analyses were performed to analyze column-bound proteins as well as corresponding changes in patients’ sera.ResultsAfter the third IA, we detected an improvement of vision in eight of eleven patients, whom we termed responders. Amongst these, the mean visual acuity improved from 0.15 ± 0.12 at baseline to 0.47 ± 0.32 after the third IA (P = 0.0252) up to 0.89 ± 0.15 (P < 0.0001) at day 180 ± 10 after IA. Soluble interleukin-2 receptor decreased in responders (P = 0.03), whereas in non-responders it did not. Proteomic analyses of proteins adsorbed to IA columns revealed that several significant immunological proteins as well as central nervous system protein fragments, including myelin basic protein, had been removed by IA.ConclusionsIA was effective in the treatment of corticosteroid-refractory optic neuritis. IA influenced the humoral immune response. Strikingly, however, we found strong evidence that demyelination products and immunological mediators were also cleared from plasma by IA.
IntroductionSepsis is characterized by systemic microvascular dysfunction. Endothelial progenitor cells (EPCs) are critically involved in maintaining vascular homeostasis under both physiological and pathological conditions. The aim of the present study was to analyze the endothelial progenitor cell system in patients suffering from sepsis with acute renal dysfunction.MethodsPatients with newly diagnosed sepsis were recruited from the ICU in a nonrandomized prospective manner. Blood samples were obtained within the first 12 hours after the diagnosis of sepsis. For quantifying endothelial progenitor cells (EPCs), CD133+/Flk-1+ cells were enumerated by cytometric analysis. Analysis of EPC proliferation was performed by a colony-forming units (CFU) assay. Blood concentrations of proangiogenic mediators were measured by ELISA. Acute renal dysfunction was diagnosed according to the Acute Kidney Injury Network (AKIN) criteria. Depending on the overall mean creatinine concentration during the stay at the ICU, patients were either assigned to a 'normal creatinine group' or to a 'high creatinine group'. Survival rates, frequency of dialysis, the simplified acute physiology score (SAPS) II scores, and different laboratory parameters were collected/used for further clinical characterizationResultsCirculating EPCs were significantly higher in all sepsis patients included in the study as opposed to healthy controls. Patients within the 'high creatinine group' showed an even more pronounced EPC increase. In contrast, EPC proliferation was severely affected in sepsis. Neither total circulating EPCs nor EPC proliferation differed between patients requiring dialysis and patients without renal replacement therapy. Cell numbers and cell proliferation also did not differ between surviving patients and patients with sepsis-related death. Serum levels of vascular endothelial growth factor (VEGF), stromal derived factor-1 (SDF-1), and Angiopoietin-2 were higher in sepsis than in healthy controls. Sepsis patients within the 'high creatinine group' showed significantly higher mean serum levels of uric acid.ConclusionsSepsis significantly affects the endothelial progenitor cell system, as reflected by increased EPC numbers, increased concentrations of proangiogenic mediators, and reduced proliferative capacity of the cells. This occurs independently from the frequency of dialysis and from patient survival. Increased serum levels of uric acid are possibly responsible for stronger EPC mobilization in sepsis patients with higher average creatinine levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.