In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.
Microplastics (MPs) are contaminants of emerging concern in the Arctic, but knowledge of their potential effects on Arctic plankton food webs remains scarce. We experimentally investigated ingestion and effects of MPs (20 μm polyethylene spheres) on the arctic copepods Calanus finmarchicus, C. glacialis and C. hyperboreus. These species dominate arctic zooplankton biomass and are relevant target species to investigate the potential impacts of MPs on the Arctic marine ecosystem. Females of each species were exposed to two concentrations of MPs (200 and 20,000 MPs L − 1 ) in combination with different food (diatom) concentrations, reflecting high (3000-5000 cells mL − 1 , spring phytoplankton bloom) and low (50-500 cells mL − 1 , pre/post bloom) food conditions. MPs did not affect negatively fecal pellet production rates in any of the species at the studied exposure concentrations. However, egg production rates of copepods exposed to MPs were 8 times higher compared with the controls, which suggests that MP exposure can cause stress-induced spawning in arctic copepods. Microscopic examination of the fecal pellets confirmed ingested MPs in the three species (up to aprox. 1000 MPs cop − 1 d − 1 ). The number of MPs per pellet decreased exponentially with increasing food concentration. The daily ingestion of MPs per copepod was higher at low-food concentrations (250-500 cells mL − 1 ). At our exposure conditions, the presence of MPs inside C. hyperboreus fecal pellets did not affect their sinking rates. Overall, our experimental research show that 1) acute exposure to virgin polyethylene MPs has a low impact on arctic Calanus species at environmentally relevant MP concentrations, independent of food availability, and 2) arctic copepods influence the environmental fate of plankton-sized MPs by exporting buoyant MPs from the surface layer to the sea floor via fecal pellets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.