Using a Tn7 transposon library of Candida albicans, we have identified a mutant that exhibited sensitivity in drop plate assays to oxidants such as menadione and hydrogen peroxide. To verify the role of the mutated gene in stress adaptation, null mutants were constructed and phenotypically characterized. Because of its apparent functions in growth and oxidant adaptation, we have named the gene GOA1. Goa1p appears to be unique to the CTG subclade of the Saccharomycotina, including C. albicans. Mutants of C. albicans lacking goa1 (strain GOA31) were more sensitive to 6 mM H 2 O 2 and 0.125 mM menadione than the wild type (wt) or a genereconstituted (GOA32) strain. The sensitivity to oxidants correlated with reduced survival of the GOA31 mutant in human neutrophils and avirulence compared to control strains. Other phenotypes of GOA31 include reduced growth and filamentation in 10% serum, Spider, and SLAD agar media and an inability to form chlamydospores. Since Goa1p has an N-terminal mitochondrion localization site, we also show that green fluorescent protein-tagged Goa1p shows a mitochondrionlike distribution during oxidant or osmotic stress. Further, the inability of GOA31 to grow in medium containing lactate, ethanol, or glycerol as the sole carbon source indicates that the mitochondria are defective in the mutant. To determine how Goa1p contributes to mitochondrial function, we compared the wt, GOA32, and GOA31 strains for mitochondrial electrical membrane potential, respiration, and oxidative phosphorylation. We now show that GOA31, but not the wt or GOA32, had decreased respiration and mitochondrial membrane potential such that mutant cells are unable to drive oxidative phosphorylation. This is the first report in C. albicans of a respiratory defect caused by a loss of mitochondrial membrane potential.
The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans.
Background:The human innate immune system can discriminate between Candida albicans yeast and hyphal forms. Results: C. albicans hyphae possess glucan structures that are unique to the hyphae and are not found in yeast. Conclusion: Hyphal glucan elicits robust immune responses.Significance: These data provide a structural basis for differential immune recognition of C. albicans yeast versus hyphae.
Comparative LDH secretion, Ext_data_figure2.ep a, Assessment of Candida induced cell death of PBMCs after 24 hours Extended Data Fig. 2.Extended Data Fig. 3 Relative C. auris induced ROS production and heatsensitivity of the cell wall components responsible for the C. auris induced cytokine production. Ext_data_figure3.ep sa, Neutrophil ROS release after 1-hour stimulation without (RPMI; negative control) or with heat-killed C. albicans, C. auris strains or zymosan (positive control), depicted in relative light units (RLU) either as time-course (left) or as area under the curve (AUC, right), n=9. b, PBMC ROS release after 1-hour stimulation without (RPMI; negative control) or with heat-killed C. albicans, C. auris strains or zymosan (positive control), depicted in RLU either as time-course (left) or as AUC (right), n=6. c, TNF-α, IL-6, IL-1β, and IL-1Ra levels in the supernatant of PBMCs after stimulation without (RPMI; negative control) or with heat-killed C. albicans and C. auris from all five geographical clades for 24 hours, n=8. d, PBMC production of cytokines IFN-γ (n=10; n=7 for C. auris 10051895), IL-10 (n=6), IL-17 (n=6), and IL-22 (n=14; n=6 for C. auris 10051893; n=11 for C. auris 10051895) after stimulation without (RPMI; negative control) or with heat-killed C. albicans and C. auris for 7 days. Graphs represent mean ± SEM, data are pooled from at least two independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p = 0.001, a-b Time curves (left panels) were assessed for statistical differences between C. auris strains and C. albicans by a two-way ANOVA, Area Under curve (AUC) means (right panels) were compared using the two-sided Wilcoxon signed rank test, c-d twosided Wilcoxon matched pairs signed-rank test comparing respective C. auris strains with C. albicans as control or reference species. Data used to make this figure can be found in Source Data Extended Data Fig. 3.Extended Data Fig. 4 Transcriptional changes induced by purified cell wall components and their respective exposure on C. albicans and C. auris Ext_data_figure4.ep s . a, Heatmap displaying the Log 2 Fold change (color scale) of the top 50 DEG of C. albicans live, for both Candida species and their cell wall components, β-glucan and mannan, at 4 hour (left panel) and 24 hours (right panel). b, Flow cytometry plot based on forward scatter component (FSC) and side scatter component (SSC), demonstrating C. surface. auris strains are slightly smaller and of higher complexity than C. albicans. c, Flow cytometry-based comparison of cell wall components of C. albicans and C. auris strains. Mean fluorescent intensity (MFI) of thimerosal-fixed Candida cells stained for Fc-Dectin-1, a marker for β-glucan (left), and ConA, a marker for mannans (right). Graphs represent mean ± SEM of the 3 means, each performed with three replicates in three independent measurements, * p < 0.05, Kruskall Wallis test with two-sided Dunn's multiple comparison test was performed comparing the respective C. auris strains with the two C. albicans refere...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.