Bridging LRT in HCC patients within MC does not improve post-LT survival or HCC recurrence in the majority of patients who fail to achieve cPR. The need for increasing LRT treatments and lack of alphafetoprotein response to LRT independently predict post-LT recurrence, serving as a surrogate for underlying tumor biology which can be utilized for prioritization of HCC LT candidates.
BackgroundExcess caloric intake is strongly associated with the development of increased adiposity, glucose intolerance, insulin resistance, dyslipidemia, and hyperleptinemia (i.e., the cardiometabolic syndrome). Research efforts have focused attention primarily on the quality (i.e., nutritional content) and/or quantity of ingested calories as potential causes for diet-induced pathology. Despite growing acceptance that biological rhythms profoundly influence energy homeostasis, little is known regarding how the timing of nutrient ingestion influences development of common metabolic diseases.ObjectiveTo test the hypothesis that the time of day at which dietary fat is consumed significantly influences multiple cardiometabolic syndrome parameters.ResultsWe report that mice fed either low or high fat diets in a contiguous fashion during the 12 hour awake/active period adjust both food intake and energy expenditure appropriately, such that metabolic parameters are maintained within a normal physiologic range. In contrast, fluctuation in dietary composition during the active period (as occurs in humans) markedly influences whole body metabolic homeostasis. Mice fed a high fat meal at the beginning of the active period retain metabolic flexibility in response to dietary challenges later in the active period (as revealed by indirect calorimetry). Conversely, consumption of high fat meal at the end of the active phase leads to increased weight gain, adiposity, glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hyperleptinemia (i.e., cardiometabolic syndrome) in mice. The latter perturbations in energy/metabolic homeostasis are independent of daily total or fat-derived calories.ConclusionsThe time-of-day at which carbohydrate versus fat is consumed markedly influences multiple cardiometabolic syndrome parameters.
In stark contrast to short-term survival, there have been no appreciable improvements in long-term survival following liver transplantation among 1-year survivors. Long-term sequelae of immunosuppression, including malignancy and infection, are the most common causes of death. This study highlights the need for better long-term immunosuppression management.
Prolonged high fat feeding is associated with myocardial contractile dysfunction in rodents. However, epidemiological data do not necessarily support the concept that fat-enriched diets adversely affect cardiac function in humans. When fed in an ad libitum manner, laboratory rodents consume chow throughout the day. In contrast, humans typically consume food only during the awake phase. Discrepancies between rodent and human feeding behaviors led us to hypothesize that the time of day at which dietary lipids are consumed significantly influences myocardial adaptation. In order to better mimic feeding behavior in humans, mice were fed (either a control or high fat diet) only during the 12-hr dark phase (i.e., no food was provided during the light phase). We report that compared to dark phase restricted control diet fed mice, mice fed a high fat diet during the dark phase exhibit: 1) essentially normal body weight gain and energy balance; 2) increased fatty acid oxidation at whole body, as well as skeletal and cardiac muscle (in the presence of insulin and/or at high workloads) levels; 3) induction of fatty acid responsive genes, including genes promoting triglyceride turnover in the heart; 4) no evidence of cardiac hypertrophy; and 5) persistence/improvement of myocardial contractile function, as assessed ex vivo. These data are consistent with the hypothesis that ingestion of dietary fat only during the more active/awake period allows adequate metabolic adaptation, thereby preserving myocardial contractile function.
The health benefits of pomegranate consumption have recently received considerable scientific focus, with most studies examining fruit and/or juice consumption. Pomegranate seed oil (POMo) is a rich source of 9-cis, 11-trans conjugate linolenic acid (CLA), which may offset the side-effects associated with weight gain. Male, wild-type CD-1 mice were divided into one of three groups (twenty per group): high-fat (HF), HF þ seed oil (HF þ POMo) or lean control (LN). In HF and HF þ POMo, mice were provided access ad libitum to a high-fat chow (60 % of energy from fat). HF þ POMo was supplemented with 61·79 mg POMo/d. LN consumed a restricted low-fat (10 % of energy from fat) chow to maintain body weight within 5 % of initial weight. Plasma was analysed for biomarkers associated with cholesterol profile (total cholesterol, HDL and TAG), glucose sensitivity (glucose and insulin), adipose tissue accumulation (leptin and adiponectin) and systemic low-grade inflammation (C-reactive protein and haptoglobin). The key findings of this study were that weight gain was associated with an increase in biomarkers of cholesterol profile, glucose sensitivity, adipose tissue accumulation and systemic low-grade inflammation (P,0·05). POMo only altered body weight accumulation, final body weight, leptin, adiponectin and insulin (P, 0·05). We found that despite a similar level of energy intake, HF mice had a greater concentration of leptin and a lower concentration of adiponectin compared to HF þ POMo mice. POMo intake was associated with an improvement in insulin sensitivity, suggesting that risk of developing type 2 diabetes may have been reduced; however, CVD risk did not change.High-fat feeding: Leptin: Adiponectin: Weight gain
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.