p27Kip1 controls cell proliferation by binding to and regulating the activity of cyclin-dependent kinases (Cdks). Here we show that Cdk inhibition and p27 stability are regulated through direct phosphorylation by tyrosine kinases. A conserved tyrosine residue (Y88) in the Cdk-binding domain of p27 can be phosphorylated by the Src-family kinase Lyn and the oncogene product BCR-ABL. Y88 phosphorylation does not prevent p27 binding to cyclin A/Cdk2. Instead, it causes phosphorylated Y88 and the entire inhibitory 3(10)-helix of p27 to be ejected from the Cdk2 active site, thus restoring partial Cdk activity. Importantly, this allows Y88-phosphorylated p27 to be efficiently phosphorylated on threonine 187 by Cdk2 which in turn promotes its SCF-Skp2-dependent degradation. This direct link between transforming tyrosine kinases and p27 may provide an explanation for Cdk kinase activities observed in p27 complexes and for premature p27 elimination in cells that have been transformed by activated tyrosine kinases.
p27Kip1 restrains cell proliferation by binding to and inhibiting cyclin-dependent kinases. To investigate the mechanisms of p27 translational regulation, we isolated a complete p27 cDNA and identified an internal ribosomal entry site (IRES) located in its 5UTR. The IRES allows for efficient p27 translation under conditions where cap-dependent translation is reduced. Searching for possible regulators of IRES activity we have identified the neuronal ELAV protein HuD as a specific binding factor of the p27 5UTR. Increased expression of HuD or the ubiquitously expressed HuR protein specifically inhibits p27 translation and p27 IRES activity. Consistent with an inhibitory role of Hu proteins in p27 translation, siRNA mediated knockdown of HuR induced endogenous p27 protein levels as well as IRES-mediated reporter translation and leads to cell cycle arrest in G1.
Steroid receptors activate and repress genes. An important class of genes that they repress is controlled by the transcription factor AP‐1. The activity of AP‐1 is inhibited by the receptor, a mechanism exploited for the therapy of various forms of pathological hyperproliferation in humans. We show here by point mutations in the DNA binding domain and by the choice of steroid ligands that repression of AP‐1 activity and transactivation functions of the glucocorticoid receptor (GR) are separable entities. While DNA binding and activation of glucocorticoid‐regulated promoters require GR dimerization, we present data that suggest that repression is a function of GR monomers.
IκBα is an inhibitor protein that prevents nuclear transport and activation of the transcription factor NF‐κB. In acute inflammation, NF‐κB is activated and increases the expression of several pro‐inflammatory cytokine and chemokine genes. Glucocorticoids counteract this process. It has been proposed that the glucocorticoid‐dependent inhibition of NF‐κB activity is mediated by increased synthesis of IκBα which should then sequester NF‐κB in an inactive cytoplasmic form. Here, we show by the use of a mutant glucocorticoid receptor and steroidal ligands that hormone‐induced IκBα synthesis and inhibition of NF‐κB activity are separable biochemical processes. A dimerization‐defective glucocorticoid receptor mutant that does not enhance the IκBα level is still able to repress NF‐κB activity. Conversely, glucocorticoid analogues competent in enhancing IκBα synthesis do not repress NF‐κB activity. These results demonstrate that increased synthesis of IκBα is neither required nor sufficient for the hormone‐mediated downmodulation of NF‐κB activity.
RAP46 was first identified by its ability to bind the glucocorticoid receptor. It has since been reported to bind several cellular proteins, including the anti-apoptotic protein Bcl-2, but the biological significance of these interactions is unknown. Here we show that RAP46 binds the hinge region of the glucocorticoid receptor and inhibits DNA binding and transactivation by the receptor. We further show that overexpression of RAP46 in mouse thymoma S49.1 cells inhibits glucocorticoid-induced apoptosis. Conversely, glucocorticoid-induced apoptosis and transactivation were enhanced after treating S49.1 cells with the immunosuppressant rapamycin, which down-regulates cellular levels of BAG-1, the mouse homolog of RAP46. The effect of rapamycin can, however, be overcome by overexpression of RAP46. These results together identify RAP46 as a protein that controls glucocorticoid-induced apoptosis through its negative regulatory action on the transactivation property of the glucocorticoid receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.