Inorganic-organic hybrid perovskites are a new family of solar cell materials, which have recently been used to make solar cells with efficiency approaching 20%. Here, we report the unique defect chemistry of the prototype material, CH3NH3PbI3, based on first-principles calculation. We found that both the Pb cations and I anions in this material exhibit strong covalency as characterized by the formation of Pb dimers and I trimers with strong covalent bonds at some of the intrinsic defects. The Pb dimers and I trimers are only stabilized in a particular charge state with significantly lowered energy, which leads to deep charge-state transition levels within the band gap, in contradiction to a recent proposal that this system has only shallow intrinsic defects. Our results show that, in order to prevent the deep-level defects from being effective recombination centers, the equilibrium carrier concentrations should be controlled so that the Fermi energy is about 0.3 eV away from the band edges. Beyond this range, according to a Shockley-Read-Hall analysis, the non-equilibrium carrier lifetime will be strongly affected by the concentration of I vacancies and the anti-site defects with I occupying a CH3NH3 site.
Chalcogenide perovskites are proposed for photovoltaic applications. The predicted band gaps of CaTiS3, BaZrS3, CaZrSe3, and CaHfSe3 with the distorted perovskite structure are within the optimal range for making single-junction solar cells. The predicted optical absorption properties of these materials are superior compared with other high-efficiency solar-cell materials. Possible replacement of the alkaline-earth cations by molecular cations, e.g., (NH3NH3)(2+), as in the organic-inorganic halide perovskites (e.g., CH3NH3PbI3), are also proposed and found to be stable. The chalcogenide perovskites provide promising candidates for addressing the challenging issues regarding halide perovskites such as instability in the presence of moisture and containing the toxic element Pb.
Organic-inorganic hybrid perovskite solar materials, being low-cost and high-performance, are promising for large-scale deployment of the photovoltaic technology. A key challenge that remains to be addressed is the toxicity of these materials since the high-efficiency solar cells are made of lead-containing materials, in particular, CH3NH3PbI3. Here, based on first-principles calculation, we search for lead-free perovskite materials based on the split-anion approach, where we replace Pb with non-toxic elements while introducing dual anions (i.e., splitting the anion sites) that preserve the charge neutrality. We show that CH3NH3BiSeI2 and CH3NH3BiSI2 exhibit improved band gaps and optical absorption over CH3NH3PbI3. The split-anion approach could also be applied to pure inorganic perovskites, significantly enlarging the pool of candidate materials in the design of low-cost, high-performance and environmentally-friendly perovskite solar materials.
Using first-principles calculations and molecular dynamics simulation, we study the working mechanism in an aluminum–graphite electrochemical cell, which was recently reported to exhibit attractive performance. We exclude the possibility of Al3+ cation intercalation into graphite as in standard Li-ion batteries. Instead, we show that the AlCl4 – anion intercalation mechanism is thermodynamically feasible. By including the ionic liquid electrolyte in the overall redox reaction, we are able to reproduce the high voltage observed in experiment. The active involvement of electrolyte in the reaction suggests that the evaluation of energy density needs to take the electrolyte into consideration. Our proposed structural model is consistent with the new peaks appearing in X-ray diffraction from the intercalation compound. The high rate capability is explained by the ultralow diffusion barriers of the AlCl4 intercalant. With the clarified working mechanism, it becomes clear that the high voltage of the Al–graphite cell is a result of the thermodynamic instability of the AlCl4-intercalated graphite.
Hybrid organic inorganic perovskite solar cells based on CH 3 NH 3 PbI 3 have drastically increased in efficiency over the past several years and are competitive with decades-old photovoltaic materials such as CdTe. Despite this impressive increase, significant issues still remain due to the intrinsic instability of CH 3 NH 3 PbI 3 which degrades into carcinogenic PbI 2 . Recently, double halide perovskites which use a pair of 1 + -3 + cations to replace Pb 2+ , such as Cs 2 InSbI 6 , and chalcogenide perovskites, such as BaZrS 3 , have been explored as potential replacements. In this work, double chalcogenide perovskites are explored to identify novel photovoltaic absorbers that can replace CH 3 NH 3 PbI 3 . Due to the large space of possible compounds, machine learning methods are used to classify materials as potential photovoltaic absorbers using data from the periodic table, eliminating wasteful computation. A random forest algorithm achieves a cross-validation accuracy of 86.4% on the constructed data set. Over 450 possible replacements are identified via traditional and statistical methods with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.