Artificial van der Waals heterostructures with two-dimensional (2D) atomic crystals are promising as an active channel or as a buffer contact layer for next-generation devices. However, genuine 2D heterostructure devices remain limited because of impurity-involved transfer process and metastable and inhomogeneous heterostructure formation. We used laser-induced phase patterning, a polymorph engineering, to fabricate an ohmic heterophase homojunction between semiconducting hexagonal (2H) and metallic monoclinic (1T') molybdenum ditelluride (MoTe2) that is stable up to 300°C and increases the carrier mobility of the MoTe2 transistor by a factor of about 50, while retaining a high on/off current ratio of 10(6). In situ scanning transmission electron microscopy results combined with theoretical calculations reveal that the Te vacancy triggers the local phase transition in MoTe2, achieving a true 2D device with an ohmic contact.
Doping two-dimensional (2D) semiconductors beyond their degenerate levels provides the opportunity to investigate extreme carrier density-driven superconductivity and phase transition in 2D systems. Chemical functionalization and the ionic gating have achieved the high doping density, but their effective ranges have been limited to ∼1 nm, which restricts the use of highly doped 2D semiconductors. Here, we report on electron diffusion from the 2D electride [CaN]·e to MoTe over a distance of 100 nm from the contact interface, generating an electron doping density higher than 1.6 × 10 cm and a lattice symmetry change of MoTe as a consequence of the extreme doping. The long-range lattice symmetry change, suggesting a length scale surpassing the depletion width of conventional metal-semiconductor junctions, was a consequence of the low work function (2.6 eV) with highly mobile anionic electron layers of [CaN]·e. The combination of 2D electrides and layered materials yields a novel material design in terms of doping and lattice engineering.
Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as MX 2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the non-trivial topology of electron bands in TMDs is caused by the band inversion between metal d and chalcogen p orbital bands, where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, MS 2 and MSe 2 exhibits the opposite behavior of TPT, such that the chalcogen p orbital band moves down below the metal d orbital band. More interestingly, in MTe 2 , the band inversion occurs between the metal d orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.2
Carrier multiplication (CM) is a process in which high-energy free carriers relax by generation of additional electron-hole pairs rather than by heat dissipation. CM is promising disruptive improvements in photovoltaic energy conversion and light detection technologies. Current state-of-the-art nanomaterials including quantum dots and carbon nanotubes have demonstrated CM, but are not satisfactory owing to high-energy-loss and inherent difficulties with carrier extraction. Here, we report CM in van der Waals (vdW) MoTe2 and WSe2 films, and find characteristics, commencing close to the energy conservation limit and reaching up to 99% CM conversion efficiency with the standard model. This is demonstrated by ultrafast optical spectroscopy with independent approaches, photo-induced absorption, photo-induced bleach, and carrier population dynamics. Combined with a high lateral conductivity and an optimal bandgap below 1 eV, these superior CM characteristics identify vdW materials as an attractive candidate material for highly efficient and mechanically flexible solar cells in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.