Mobile electroencephalography (mobile EEG) represents a next-generation neuroscientific technology – to study real-time brain activity – that is relatively inexpensive, non-invasive and portable. Mobile EEG leverages state-of-the-art hardware alongside established advantages of traditional EEG and recent advances in signal processing. In this review, we propose that mobile EEG could open unprecedented possibilities for studying neurodevelopmental disorders. We first present a brief overview of recent developments in mobile EEG technologies, emphasising the proliferation of studies in several neuroscientific domains. As these developments have yet to be exploited by neurodevelopmentalists, we then identify three research opportunities: 1) increase in the ease and flexibility of brain data acquisition in neurodevelopmental populations; 2) integration into powerful developmentally-informative research designs; 3) development of innovative non-stationary EEG-based paradigms. Critically, we address key challenges that should be considered to fully realise the potential of mobile EEG for neurodevelopmental research and for understanding developmental psychopathology more broadly, and suggest future research directions.
IntroductionTreatment with dexamethasone reduces mortality in patients with coronavirus disease 2019 (COVID-19) pneumonia requiring supplemental oxygen, but the optimal dose has not been determined.
ObjectiveTo determine whether weight-based dexamethasone of 0.2 mg/kg is superior to 6 mg daily in reducing 28day mortality in patients with COVID-19 and hypoxemia.
Materials and methodsA multicenter, open-label, randomized clinical trial was conducted between March 2021 and December 2021 at seven hospitals within Northwell Health. A total of 142 patients with confirmed COVID-19 and hypoxemia were included. Participants were randomized in a 1:1 ratio to dexamethasone 0.2 mg/kg intravenously daily (n = 70) or 6 mg daily (n = 72) for up to 10 days.
ResultsThere was no statistically significant difference in the primary outcome of 28-day all-cause mortality with deaths in 12 of 70 patients (17.14%) in the intervention group and 15 of 72 patients (20.83%) in the control group (p = 0.58). There were no statistically significant differences among the secondary outcomes.
ConclusionIn patients with COVID-19 and hypoxemia, the use of weight-based dexamethasone dosing was not superior to dexamethasone 6 mg in reducing all-cause mortality at 28 days.
Clinical trial registrationThis study was registered under ClinicalTrials.gov (identifier: NCT04834375).
Monitoring of fetal electrocardiogram (fECG) would provide useful information about fetal wellbeing as well as any abnormal development during pregnancy. Recent advances in flexible electronics and wearable technologies have enabled compact devices to acquire personal physiological signals in the home setting, including those of expectant mothers. However, the high noise level in the daily life renders long-entrenched challenges to extract fECG from the combined fetal/maternal ECG signal recorded in the abdominal area of the mother. Thus, an efficient fECG extraction scheme is a dire need. In this work, we intensively explored various extraction algorithms, including template subtraction (TS), independent component analysis (ICA), and extended Kalman filter (EKF) using the data from the PhysioNet 2013 Challenge. Furthermore, the modified data with Gaussian and motion noise added, mimicking a practical scenario, were utilized to examine the performance of algorithms. Finally, we combined different algorithms together, yielding promising results, with the best performance in the F1 score of 92.61% achieved by an algorithm combining ICA and TS. With the data modified by adding different types of noise, the combination of ICA–TS–ICA showed the highest F1 score of 85.4%. It should be noted that these combined approaches required higher computational complexity, including execution time and allocated memory compared with other methods. Owing to comprehensive examination through various evaluation metrics in different extraction algorithms, this study provides insights into the implementation and operation of state-of-the-art fetal and maternal monitoring systems in the era of mobile health.
Both the in vitro and computational model results demonstrate that lesion depth decreases consistently as the bipolar-to-unipolar ratio increases-suggesting a clinical application to potentially control lesion depth with higher fidelity than is currently available. The effect of variable design parameters and clinical conditions on RF ablation can now be expeditiously studied with this validated model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.