Abstract:Inelastic deformation of metallic glasses occurs via slip events with avalanche dynamics similar to those of earthquakes. For the first time in these materials, measurements have been obtained with sufficiently high temporal resolution to extract both the exponents and the scaling functions that describe the nature, statistics and dynamics of the slips according to a simple mean-field model. These slips originate from localized deformation in shear bands. The mean-field model describes the slip process as an avalanche of rearrangements of atoms in shear transformation zones (STZs). Small slips show the predicted power-law scaling and correspond to limited propagation of a shear front, while large slips are associated with uniform shear on unconstrained shear bands. The agreement between the model and data across multiple independent measures of slip statistics and dynamics provides compelling evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses. 2 One Sentence Summary:We show that bulk metallic glasses deform via slip avalanches of "weak spots", by demonstrating agreement of new high temporal resolution measurements of the slip-statistics and dynamics with the predictions of a simple mean field model for plastic deformation. Main Text:We show here that slowly sheared metallic glasses deform plastically via slip avalanches of weak spots. The weak spots are shear transformation zones (STZs), which are collective rearrangements of 10-100 atoms [1].During high temperature deformation of metallic glasses (close to the glass transition), STZs operate independently and the material flows homogeneously, in agreement with STZ theory predictions over several orders of magnitude of stress and strain rate [1,2]. At lower temperatures metallic glasses deform inhomogenously via intermittent slips on narrow shear bands [3]. At low strain rates, these slip events are manifested as sudden stress drops, called serrated flow. Analytical [4,5] and computational investigations [6,7,8] suggest STZ operation, but experimental support has been challenging because slip events are both fast (with millisecond durations) and highly localized (with thicknesses <1 µm) [3]. Here we report experimental results on the stress drop dynamics and statistics, finding excellent agreement with analytic model predictions for the slip avalanche statistics of weak spots or STZs.Many other materials-including crystals and densely packed granular solids-exhibit sudden slips during inelastic deformation. Although the mechanisms of deformation differ, the statistics and dynamics of the slip events are described by the same simple mean-field model of plastic deformation [9,10]. The model assumes that weak spots slip and then restick whenever the local shear stress exceeds a local slip threshold. Weak spots in crystals are dislocations, while in a metallic glass they are STZs. Through elastic interactions a slipping weak spot can trigger others to slip creating a slip avalanche. In crystal...
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.
High-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly-equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. The ratio of the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin-LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloy design.
We derive exact predictions for universal scaling exponents and scaling functions associated with the statistics of maximum velocities vm during avalanches described by the mean field theory of the interface depinning transition. In particular, we find a robust power-law regime in the statistics of maximum events that can explain the observed distribution of the peak amplitudes in acoustic emission experiments of crystal plasticity. Our results are expected to be broadly applicable to a broad range of systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.
Two distinct types of slip events occur during serrated plastic flow of bulk metallic glasses. These events are distinguished not only by their size but also by distinct stress drop rate profiles. Small stress drop serrations have fluctuating stress drop rates (with maximum stress drop rates ranging from 0.3–1 GPa/s), indicating progressive or intermittent propagation of a shear band. The large stress drop serrations are characterized by sharply peaked stress drop rate profiles (with maximum stress drop rates of 1–100 GPa/s). The propagation of a large slip is preceded by a slowly rising stress drop rate that is presumably due to the percolation of slipping weak spots prior to the initiation of shear over the entire shear plane. The onset of the rapid shear event is accompanied by a burst of acoustic emission. These large slips correspond to simultaneous shear with uniform sliding as confirmed by direct high-speed imaging and image correlation. Both small and large slip events occur throughout plastic deformation. The significant differences between these two types require that they be carefully distinguished in both modeling and experimental efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.