Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a 'compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.
Climate and weather variables such as rainfall, temperature, and pressure are indicators for hazards such as tropical cyclones, floods, and fires. The impact of these events can be due to a single variable being in an extreme state, but more often it is the result of a combination of variables not all of which are necessarily extreme. Here, the combination of variables or events that lead to an extreme impact is referred to as a compound event. Any given compound event will depend upon the nature and number of physical variables, the range of spatial and temporal scales, the strength of dependence between processes, and the perspective of the stakeholder who defines the impact. Modeling compound events is a large, complex, and interdisciplinary undertaking. To facilitate this task we propose the use of influence diagrams for defining, mapping, analyzing, modeling, and communicating the risk of the compound event. Ultimately, a greater appreciation of compound events will lead to further insight and a changed perspective on how impact risks are associated with climate‐related hazards. WIREs Clim Change 2014, 5:113–128. doi: 10.1002/wcc.252 This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models Assessing Impacts of Climate Change > Representing Uncertainty
This study investigates global changes in indicators of mean and extreme streamflow. The assessment is based on the Global Streamflow Indices and Metadata archive and focuses on time series of the annual minimum, the 10th, 50th, and 90th percentiles, the annual mean, and the annual maximum of daily streamflow. Trends are estimated using the Sen‐Theil slope, and the significance of mean regional trends is established through bootstrapping. Changes in the indices are often regionally consistent, showing that the entire flow distribution is moving either upward or downward. In addition, the analysis confirms the complex nature of hydrological change where drying in some regions (e.g., in the Mediterranean) is contrasted by wetting in other regions (e.g., North Asia). Observed changes are discussed in the context of previous results and with respect to model estimates of the impacts of anthropogenic climate change and human water management.
Anthropogenic climate change is expected to affect global river flow. Here, we analyze time series of low, mean, and high river flows from 7250 observatories around the world covering the years 1971 to 2010. We identify spatially complex trend patterns, where some regions are drying and others are wetting consistently across low, mean, and high flows. Trends computed from state-of-the-art model simulations are consistent with the observations only if radiative forcing that accounts for anthropogenic climate change is considered. Simulated effects of water and land management do not suffice to reproduce the observed trend pattern. Thus, the analysis provides clear evidence for the role of externally forced climate change as a causal driver of recent trends in mean and extreme river flow at the global scale.
This paper presents a strategy for diagnosing and interpreting hydrological nonstationarity, aiming to improve hydrological models and their predictive ability under changing hydroclimatic conditions. The strategy consists of four elements: (i) detecting potential systematic errors in the calibration data; (ii) hypothesizing a set of ''nonstationary'' parameterizations of existing hydrological model structures, where one or more parameters vary in time as functions of selected covariates; (iii) trialing alternative stationary model structures to assess whether parameter nonstationarity can be reduced by modifying the model structure; and (iv) selecting one or more models for prediction. The Scott Creek catchment in South Australia and the lumped hydrological model GR4J are used to illustrate the strategy. Streamflow predictions improve significantly when the GR4J parameter describing the maximum capacity of the production store is allowed to vary in time as a combined function of: (i) an annual sinusoid; (ii) the previous 365 day rainfall and potential evapotranspiration; and (iii) a linear trend. This improvement provides strong evidence of model nonstationarity. Based on a range of hydrologically oriented diagnostics such as flow-duration curves, the GR4J model structure was modified by introducing an additional calibration parameter that controls recession behavior and by making actual evapotranspiration dependent only on catchment storage. Model comparison using an information-theoretic measure (the Akaike Information Criterion) and several hydrologically oriented diagnostics shows that the GR4J modifications clearly improve predictive performance in Scott Creek catchment. Based on a comparison of 22 versions of GR4J with different representations of nonstationarity and other modifications, the model selection approach applied in the exploratory period (used for parameter estimation) correctly identifies models that perform well in a much drier independent confirmatory period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.