Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a 'compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.
Evidence that extreme rainfall intensity is increasing at the global scale has strengthened considerably in recent years. Research now indicates that the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flash floods. This review examines the evidence for subdaily extreme rainfall intensification due to anthropogenic climate change and describes our current physical understanding of the association between subdaily extreme rainfall intensity and atmospheric temperature. We also examine the nature, quality, and quantity of information needed to allow society to adapt successfully to predicted future changes, and discuss the roles of observational and modeling studies in helping us to better understand the physical processes that can influence subdaily extreme rainfall characteristics. We conclude by describing the types of research required to produce a more thorough understanding of the relationships between local-scale thermodynamic effects, large-scale atmospheric circulation, and subdaily extreme rainfall intensity.
This study investigates the presence of trends in annual maximum daily precipitation time series obtained from a global dataset of 8326 high-quality land-based observing stations with more than 30 years of record over the period from 1900 to 2009. Two complementary statistical techniques were adopted to evaluate the possible nonstationary behavior of these precipitation data. The first was a Mann–Kendall nonparametric trend test, and it was used to evaluate the existence of monotonic trends. The second was a nonstationary generalized extreme value analysis, and it was used to determine the strength of association between the precipitation extremes and globally averaged near-surface temperature. The outcomes are that statistically significant increasing trends can be detected at the global scale, with close to two-thirds of stations showing increases. Furthermore, there is a statistically significant association with globally averaged near-surface temperature, with the median intensity of extreme precipitation changing in proportion with changes in global mean temperature at a rate of between 5.9% and 7.7% K−1, depending on the method of analysis. This ratio was robust irrespective of record length or time period considered and was not strongly biased by the uneven global coverage of precipitation data. Finally, there is a distinct meridional variation, with the greatest sensitivity occurring in the tropics and higher latitudes and the minima around 13°S and 11°N. The greatest uncertainty was near the equator because of the limited number of sufficiently long precipitation records, and there remains an urgent need to improve data collection in this region to better constrain future changes in tropical precipitation.
Climate and weather variables such as rainfall, temperature, and pressure are indicators for hazards such as tropical cyclones, floods, and fires. The impact of these events can be due to a single variable being in an extreme state, but more often it is the result of a combination of variables not all of which are necessarily extreme. Here, the combination of variables or events that lead to an extreme impact is referred to as a compound event. Any given compound event will depend upon the nature and number of physical variables, the range of spatial and temporal scales, the strength of dependence between processes, and the perspective of the stakeholder who defines the impact. Modeling compound events is a large, complex, and interdisciplinary undertaking. To facilitate this task we propose the use of influence diagrams for defining, mapping, analyzing, modeling, and communicating the risk of the compound event. Ultimately, a greater appreciation of compound events will lead to further insight and a changed perspective on how impact risks are associated with climate‐related hazards. WIREs Clim Change 2014, 5:113–128. doi: 10.1002/wcc.252 This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models Assessing Impacts of Climate Change > Representing Uncertainty
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.