Systematic reviews are increasingly used to inform health care decisions, but are expensive to produce. We explore the use of crowdsourcing (distributing tasks to untrained workers via the web) to reduce the cost of screening citations. We used Amazon Mechanical Turk as our platform and 4 previously conducted systematic reviews as examples. For each citation, workers answered 4 or 5 questions that were equivalent to the eligibility criteria. We aggregated responses from multiple workers into an overall decision to include or exclude the citation using 1 of 9 algorithms and compared the performance of these algorithms to the corresponding decisions of trained experts. The most inclusive algorithm (designating a citation as relevant if any worker did) identified 95% to 99% of the citations that were ultimately included in the reviews while excluding 68% to 82% of irrelevant citations. Other algorithms increased the fraction of irrelevant articles excluded at some cost to the inclusion of relevant studies. Crowdworkers completed screening in 4 to 17 days, costing $460 to $2220, a cost reduction of up to 88% compared to trained experts. Crowdsourcing may represent a useful approach to reducing the cost of identifying literature for systematic reviews.
It is common practice for data scientists to acquire and integrate disparate data sources to achieve higher quality results. But even with a perfectly cleaned and merged data set, two fundamental questions remain: (1) is the integrated data set complete and (2) what is the impact of any unknown (i.e., unobserved) data on query results?In this work, we develop and analyze techniques to estimate the impact of the unknown data (a.k.a., unknown unknowns) on simple aggregate queries. The key idea is that the overlap between different data sources enables us to estimate the number and values of the missing data items. Our main techniques are parameter-free and do not assume prior knowledge about the distribution. Through a series of experiments, we show that estimating the impact of unknown unknowns is invaluable to better assess the results of aggregate queries over integrated data sources.
It is common practice for data scientists to acquire and integrate disparate data sources to achieve higher quality results. But even with a perfectly cleaned and merged data set, two fundamental questions remain: (1) is the integrated data set complete and (2) what is the impact of any unknown (i.e., unobserved) data on query results?In this work, we develop and analyze techniques to estimate the impact of the unknown data (a.k.a., unknown unknowns) on simple aggregate queries. The key idea is that the overlap between different data sources enables us to estimate the number and values of the missing data items. Our main techniques are parameter-free and do not assume prior knowledge about the distribution. Through a series of experiments, we show that estimating the impact of unknown unknowns is invaluable to better assess the results of aggregate queries over integrated data sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.