Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO:P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.
Halide semiconductors stand at the very beginning of semiconductor science and technology. CuI was reported as the first transparent conductor, and the first field effect transistor was made from KBr. Although halogens are frequently used in semiconductor preparation, little use is currently made from halide semiconductors in electronics and photonics. We review past reports on the metal halide semiconductor CuI and related alloys and discuss recent progress with regard to this material including its use in organic electronics and solar cells as well as our own work on fully transparent bipolar heterostructure diodes (p‐CuI/n‐ZnO) with high rectification of several 107 and ideality factors down to 1.5. γ‐CuI(111) thin film on glass (1 × 1 cm2) and IV‐characteristics of p‐CuI/n‐ZnO/a‐Al2O3 bipolar heterojunction diode.
Polarized micro-Raman measurements were performed to study the phonon modes of Fe, Sb, Al, Ga, and Li doped ZnO thin films, grown by pulsed-laser deposition on c-plane sapphire substrates. Additional modes at about 277, 511, 583, and 644 cm−1, recently assigned to N incorporation [A. Kaschner et al., Appl. Phys. Lett. 80, 1909 (2002)], were observed for Fe, Sb, and Al doped films, intentionally grown without N. The mode at 277 cm−1 occurs also for Ga doped films. These modes thus cannot be related directly to N incorporation. Instead, we suggest host lattice defects as their origin. Further additional modes at 531, 631, and 720 cm−1 seem specific for the Sb, Ga, and Fe dopants, respectively. Li doped ZnO did not reveal additional modes.
A multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates. We obtain reproducibly high electron mobilities from 115 up to 155 cm2/V s at 300 K in a narrow carrier concentration range from 2 to 5×1016 cm−3. The key issue of the multistep PLD process is the insertion of 30-nm-thin ZnO relaxation layers deposited at reduced substrate temperature. The high-mobility samples show atomically flat surface structure with grain size of about 0.5–1 μm, whereas the surfaces of low-mobility films consist of clearly resolved hexagonally faceted columnar grains of only 200-nm size, as shown by atomic force microscopy. Structurally optimized PLD ZnO thin films show narrow high-resolution x-ray diffraction peak widths of the ZnO(0002) ω- and 2Θ-scans as low as 151 and 43 arcsec, respectively, and narrow photoluminescence linewidths of donor-bound excitons of 1.7 meV at 2 K.
Infrared dielectric function spectra and phonon modes of high-quality, single crystalline, and highly resistive wurtzite ZnO films were obtained from infrared (300–1200 cm−1) spectroscopic ellipsometry and Raman scattering studies. The ZnO films were deposited by pulsed-laser deposition on c-plane sapphire substrates and investigated by high-resolution x-ray diffraction, high-resolution transmission electron microscopy, and Rutherford backscattering experiments. The crystal structure, phonon modes, and dielectric functions are compared to those obtained from a single-crystal ZnO bulk sample. The film ZnO phonon mode frequencies are highly consistent with those of the bulk material. A small redshift of the longitudinal optical phonon mode frequencies of the ZnO films with respect to the bulk material is observed. This is tentatively assigned to the existence of vacancy point defects within the films. Accurate long-wavelength dielectric constant limits of ZnO are obtained from the infrared ellipsometry analysis and compared with previously measured near-band-gap index-of-refraction data using the Lyddane–Sachs–Teller relation. The ZnO model dielectric function spectra will become useful for future infrared ellipsometry analysis of free-carrier parameters in complex ZnO-based heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.