Spinels with the formula of ABO (where A and B are metal ions) and the properties of magnetism, optics, electricity, and catalysis have taken significant roles in applications of data storage, biotechnology, electronics, laser, sensor, conversion reaction, and energy storage/conversion, which largely depend on their precise structures and compositions. In this review, various spinels with controlled preparations and their applications in oxygen reduction/evolution reaction (ORR/OER) and beyond are summarized. First, the composition and structure of spinels are introduced. Then, recent advances in the preparation of spinels with solid-, solution-, and vapor-phase methods are summarized, and new methods are particularly highlighted. The physicochemical characteristics of spinels such as their compositions, structures, morphologies, defects, and substrates have been rationally regulated through various approaches. This regulation can yield spinels with improved ORR/OER catalytic activities, which can further accelerate the speed, prolong the life, and narrow the polarization of fuel cells, metal-air batteries, and water splitting devices. Finally, the magnetic, optical, electrical, and catalytic applications beyond the OER/ORR are also discussed. The future applications of spinels are considered to be closely related to environmental and energy issues, which will be aided by the development of new species with precise preparations and advanced characterizations.