The use of gold nanoparticles in conjunction with etched capillary-based open-tubular capillary electrochromatography (OTCEC) to improve the efficiency of separation and the selectivity between selected solutes is described. The fused-silica capillaries (50-microm i.d.) were etched with ammonium hydrogen difluoride, followed by prederivatization of the new surface with (3-mercaptopropyl)trimethoxysilane (MPTMS) for the immobilization of dodecanethiol gold nanoparticles, for OTCEC. The electrochromatography of a "reversed-phase" test mixture and of selected polycylic aromatic hydrocarbons was investigated, and efficient separations and high theoretical plate numbers per meter were obtained. The electroosmotic flow characteristics of the etched gold nanoparticle capillary, unetched gold nanoparticle capillary, bare capillary, and etched bare capillary were studied by varying the percentage of organic modifier in buffer, buffer pH, and separation voltage. Optical microscopy and scanning electron microscopy were used to examine the process of etching and modification and the surface features of the etched gold nanoparticle capillary. The results confirm that dodecanethiol gold nanoparticles bonded on the etched inner wall of the fused-silica capillary can provide sufficient solute-bonded phase interactions to obtain OTCEC separations with reproducible retention, as well as characteristic reversed-phase behavior, even with the inner diameter of the capillary of 50 microm.
The first use of plasma polymerization technique to modify the surface of a glass chip for capillary isoelectric focusing (cIEF) of different proteins is reported. The electrophoresis separation channel was machined in Tempax glass chips with length 70 mm, 300 microm width and 100 microm depth. Acetonitrile and hexamethyldisiloxane monomers were used for plasma polymerization. In each case 100 nm plasma polymer films were coated onto the chip surface to reduce protein wall adsorption and minimize the electroosmotic flow. Applied voltages of 1000 V, 2000 V and 3000 V were used to separate mixtures of cytochrome c (pI 9.6), hemoglobin (pI 7.0) and phycocyanin (pI 4.65). Reproducible isoelectric focusing of each pI marker protein was observed in different coated capillaries at increasing concentration 2.22-5 microg microL(-1). Modification of the glass capillary with hydrophobic HMDS plasma polymerized films enabled rapid cIEF within 3 min. The separation efficiency of cytochrome c and phycocyanin in both acrylamide and HMDS coated capillaries corresponded to a plate number of 19600 which compares favourably with capillary electrophoresis of neurotransmitters with amperometric detection.
Access to the full text of the published version may require a subscription. An integrated microfluidic system was fabricated which functions by deliberately manipulating interfacial tension. A distinctive characteristic of our system is the use of an array of adjacent, elongated, working electrodes and protruding polydimethylsiloxane open-flow channels. Microfluidic transport was realized directly on the bare gold electrode surface in the absence of an additional dielectric layer. By changing the potential of the working electrode to a negative potential, a liquid column could be transported from one end of an elongated working electrode to the other end. Transport of the liquid column could be altered without any valves by switching on the adjacent electrode in a given direction. The flow velocity depended on the applied potential, i.e., the velocity could be altered by deliberate manipulation of the electrode potential. In addition, the flow velocity increased as the dimensions of the flow channel decreased. The applied voltage was less than 2 V, and the power consumption was in the order of tens of W. Rights
Planar chip technology provides a versatile and powerful method for fabrication of micro-channels of any capillary length. In this research, four different glass micro-structures for capillary electrophoresis are presented. A dicing saw provided a convenient means for reproducible micro-fabrication of a versatile microchip format composed of a single first dimension capillary micro-channel interfaced to a second-dimensional array of multiple parallel capillaries. Revision of the prototype chip geometry included introduction of stacking capillaries to enhance sample transfer between the first and second dimension. The optical transparency of the borosilicate glass enabled confirmation of efficient microfluidic transfer in both one-dimensional and 2-dimensional micro-channel capillaries with a CCD camera. Platinum electrodes and buffer reservoirs were also included on each chip to facilitate CE. Finally, 2-dimensional separation of hemoglobin was observed in a solid polyacrylamide gel matrix on a 5 cm2 microchip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.