Applying Deep Learning to control has a lot of potential for enabling the intelligent design of robot control laws. Unfortunately common deep learning approaches to control, such as deep reinforcement learning, require an unrealistic amount of interaction with the real system, do not yield any performance guarantees, and do not make good use of extensive insights from control theory. In particular, common black-box approaches -that abandon all insight from control -are not suitable for complex robot systems.We propose a deep control approach as a bridge between the solid theoretical foundations of energy-based control and the flexibility of deep learning. To accomplish this goal, we extend Deep Lagrangian Networks (DeLaN) to not only adhere to Lagrangian Mechanics but also ensure conservation of energy and passivity of the learned representation. This novel extension is embedded within a energy control law to control underactuated systems. The resulting DeLaN for energy control (DeLaN 4EC) is the first model learning approach using generic function approximation that is capable of learning energy control because existing approaches cannot learn the system energies directly. DeLaN 4EC exhibits excellent real-time control on the physical Furuta pendulum and learns to swing-up the pendulum while the control law using system identification does not.
Intelligent robotic assistants can potentially improve the quality of life for elderly people and help them maintain their independence. However, the number of different and personalized tasks render pre-programming of such assistive robots prohibitively difficult. Instead, to cope with a continuous and open-ended stream of cooperative tasks, new collaborative skills need to be continuously learned and updated from demonstrations. To this end, we introduce an online learning method for a skill library of collaborative tasks that employs an incremental mixture model of probabilistic interaction primitives. This model chooses a corresponding robot response to a human movement where the human intention is extracted from previously demonstrated movements. Unlike existing batch methods of movement primitives for humanrobot interaction, our approach builds a library of skills online, in an open-ended fashion and updates existing skills using new demonstrations. The resulting approach was evaluated both on a simple benchmark task and in an assistive human-robot collaboration scenario with a 7DoF robot arm.
When transferring a control policy from simulation to a physical system, the policy needs to be robust to variations in the dynamics to perform well. Commonly, the optimal policy overfits to the approximate model and the corresponding statedistribution, often resulting in failure to trasnfer underlying distributional shifts. In this paper, we present Robust Fitted Value Iteration, which uses dynamic programming to compute the optimal value function on the compact state domain and incorporates adversarial perturbations of the system dynamics. The adversarial perturbations encourage a optimal policy that is robust to changes in the dynamics. Utilizing the continuoustime perspective of reinforcement learning, we derive the optimal perturbations for the states, actions, observations and model parameters in closed-form. Notably, the resulting algorithm does not require discretization of states or actions. Therefore, the optimal adversarial perturbations can be efficiently incorporated in the min-max value function update. We apply the resulting algorithm to the physical Furuta pendulum and cartpole. By changing the masses of the systems we evaluate the quantitative and qualitative performance across different model parameters. We show that robust value iteration is more robust compared to deep reinforcement learning algorithm and the non-robust version of the algorithm. Videos of the experiments are shown at https://sites.google.com/view/rfvi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.