Electrical resistivity, thermal expansion, and temperature-dependent x-ray diffraction measurements on compounds give mutually consistent evidence for structural phase transitions at 740 K, 550 K, 600 K, and 450 K respectively for R = Y, Sm, Gd, Tb; 0 < x < 0.05. Arguments are given as to why most of the rare-earth - nickel compounds with the 1:2 ratio do not crystallize in the simple cubic Laves phase (C15 type) but show a superstructure of the cubic Laves phase at room temperature and at ambient pressure. This superstructure with the space group and a doubled cell parameter is characterized by ordered vacancies on the R sites. It is shown that the observed structural instabilities result in transitions to the cubic Laves phase (space group ), however with disordered vacancies at high temperatures. High-pressure x-ray powder diffraction experiments show that the phase transition in shifts down to room temperature for a pressure of 27 GPa.
An experimental method for the verification of the individually different energy dependencies of L(1)-, L(2)-, and L(3)- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.