High rates of psychiatric symptoms have been reported in pathological gamblers. This study of psychiatric comorbidity in pathological gamblers is the first to use structured psychiatric interviews assessing DSM-III-R Axis I and II disorders. The Structured Clinical Interview for DSM III-R (SCID-P, SCID-II) was administered to 40 (25 male, 15 male) pathological gamblers seeking outpatient treatment in Minnesota for gambling, and 64 (41 male, 23 female) controls. High lifetime rates of Axis I (92%) but not Axis II (25%) psychopathology were found in pathological gamblers as compared to controls. No differences between male and female gamblers were found in rates of affective, substance use or personality disorders. Females had higher rates of anxiety disorders and histories of physical/sexual abuse. Possible associations between psychiatric disorders and pathological gambling are discussed along with gambler typologies and implications for future research.
Little systematic research has been done on psychiatric comorbidity of pathological gambling, an impulse control disorder. This report describes the occurrence of attention deficit disorder and impulse control disorders in 40 pathological gamblers in treatment for gambling problems and 64 controls. Diagnoses were made by structured interviews which utilized operationalized diagnostic criteria. An impulse control disorder other than pathological gambling was noted in 35% of the pathological gamblers, compared to 3% of the controls (p < .001). Compulsive buying (p < .001) and compulsive sexual behavior (p < .05) were significantly higher in pathological gamblers than controls. A strong association was seen among pathological gambling, attention deficit, and other impulse control disorders. Attention deficit disorder was seen in 20% of the pathological gamblers. Rates of impulse control disorders did not differ by gender. Implications of these high rates of comorbidity are discussed.
SUMMARYUrinary tract development depends on a complex series of events in which the ureter moves from its initial branch point on the nephric duct (ND) to its final insertion site in the cloaca (the primitive bladder and urethra). Defects in this maturation process can result in malpositioned ureters and hydronephrosis, a common cause of renal disease in children. Here, we report that insertion of the ND into the cloaca is an unrecognized but crucial step that is required for proper positioning of the ureter and that depends on Ret signaling. Analysis of Ret mutant mice at birth reveals hydronephrosis and defective ureter maturation, abnormalities that our results suggest are caused, at least in part, by delayed insertion of the ND. We find a similar set of malformations in mutants lacking either Gata3 or Raldh2. We show that these factors act in parallel to regulate ND insertion via Ret. Morphological analysis of ND extension in wild-type embryos reveals elaborate cellular protrusions at ND tips that are not detected in Ret, Gata3 or Raldh2 mutant embryos, suggesting that these protrusions may normally be important for fusion with the cloaca. Together, our studies reveal a novel Ret-dependent event, ND insertion, that, when abnormal, can cause obstruction and hydronephrosis at birth; whether ND defects underlie similar types of urinary tract abnormalities in humans is an interesting possibility.
Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.
Animal development progresses through the stepwise deployment of gene regulatory networks (GRN) encoded in the genome. Comparative analyses in different species and organ systems have revealed that GRN blueprints are composed of subcircuits with stereotypical architectures that are often reused as modular units. In this review, we report the evidence for the GRN underlying renal primordium development. In vertebrates, renal development is initiated by the induction of a field of intermediate mesoderm cells competent to undergo lineage specification and nephric (Wolffian) duct formation. Definition of the renal field leads to the activation of a core regulatory subcircuit composed of the transcription factors Pax2/8, Gata3 and Lim1. These transcription factors turn on a second layer of transcriptional regulators while also activating effectors of tissue morphogenesis and cellular specialization. Elongation and connection of the nephric duct to the cloaca (bladder/urethra primordium) is followed by metanephric kidney induction through signals emanating from the metanephric mesenchyme. Central to this process is the activation and positioning of the glial cell line-derived neurotrophic factor (Gdnf)-Ret signaling pathway by network subcircuits located in the mesenchyme and epithelial tissues of the caudal trunk. Evidence shows that each step of the renal primordium developmental program is regulated by structured GRN subunits organized in a hierarchical manner. Understanding the structure and dynamics of the renal GRN will help us understand the intrinsic phenotypical variability of congenital anomalies of the kidney and urinary tract and guide our approaches to regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.