We present simple, concrete, two-fermion models that exhibit thermodynamically stable isotropic translationally-invariant gapless superfluid states (breached pair superfluidity). The mass ratio between the components and the momentum structure of the interaction are crucial for determining the stability of such states: Idealized, momentum-independent ("contact") interactions are insufficient.
In this paper we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 12 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 10 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with-and could entirely explain-the so-called "wmap haze": a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (wmap). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.
We present strong theoretical evidence that a Larkin-Ovchinnikov (LOFF/FFLO) pairing phase is favored over the homogeneous superfluid and normal phases in three-dimensional unitary Fermi systems. Using a density functional theory (DFT) based on the latest quantum Monte Carlo calculations and experimental results, we show that this phase is competitive over a large region of the phase diagram. The oscillations in the number densities and pairing field have a substantial amplitude, and a period some 3 to 10 times the average interparticle separation. Within the DFT, the transition to a normal polarized Fermi liquid at large polarizations is smooth, while the transition to a fully paired superfluid is abrupt.
We show that two new intraspecies P-wave superfluid phases appear in two-component asymmetric Fermi systems with short-range S-wave interactions. In the BEC limit, phonons of the molecular BEC induce P-wave superfluidity in the excess fermions. In the BCS limit, density fluctuations induce P-wave superfluidity in both the majority and the minority species. These phases may be realized in experiments with spin-polarized Fermi gases.
In this chapter, we describe three related studies of the universal physics of two-component unitary Fermi gases with resonant short-ranged interactions. First we discuss an ab initio auxiliary field quantum Monte Carlo technique for calculating thermodynamic properties of the unitary gas from first principles. We then describe in detail a Density Functional Theory (DFT) fit to these thermodynamic properties: the Superfluid Local Density Approximation (SLDA) and its Asymmetric (ASLDA) generalization. We present several applications, including vortex structure, trapped systems, and a supersolid Larkin-Ovchinnikov (FFLO/LOFF) state. Finally, we discuss the time-dependent extension to the density functional (TDDFT) which can describe quantum dynamics in these systems, including non-adiabatic evolution, superfluid to normal transitions and other modes not accessible in traditional frameworks such as a Landau-Ginzburg, Gross-Pitaevskii, or quantum hydrodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.