In this dissertation, a method and a tool to enable design and verification of computation demanding embedded vision-based systems is presented. Starting with an executable specification in OpenCV, we provide subsequent refinements and verification down to a system-on-chip prototype into an FPGA-Based smart camera. At each level of abstraction, properties of image processing applications are used along with structure composition to provide a generic architecture that can be automatically verified and mapped to the lower abstraction level. The result is a framework that encapsulates the computer vision library OpenCV at the highest level, integrates Accelera's System-C/TLM with UVM and QEMU-OS for virtual prototyping and verification and mapping to a lower level, the last of which is the FPGA. This will relieve hardware designers from time-consuming and error-prone manual implementations, thus allowing them to focus on other steps of the design process. We also propose a novel streaming interface, called Component Interconnect and Data Access (CIDA), for embedded video designs, along with a formal model and a component composition mechanism to cluster components in logical and operational groups that reduce resource usage and power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.