Stress caused by environmental factors evokes dynamic changes in plant phenotypes. In this study, we deciphered simultaneously the reaction of plant growth and chlorophyll fluorescence related parameters using a novel approach which combines existing imaging technologies (GROWSCREEN FLUORO). Three different abiotic stress situations were investigated demonstrating the benefit of this approach to distinguish between effects related to (1) growth, (2) chlorophyll-fluorescence, or (3) both of these aspects of the phenotype. In a drought stress experiment with more than 500 plants, poly(ADP-ribose) polymerase (PARP) deficient lines of Arabidopsis thaliana (L.) Heynh showed increased relative growth rates (RGR) compared with C24 wild-type plants. In chilling stress, growth of PARP and C24 lines decreased rapidly, followed by a decrease in Fv/Fm. Here, PARP-plants showed a more pronounced decrease of Fv/Fm than C24, which can be interpreted as a more efficient strategy for survival in mild chilling stress. Finally, the reaction of Nicotiana tabacum L. to altered spectral composition of the intercepted light was monitored as an example of a moderate stress situation that affects chlorophyll-fluorescence related, but not growth-related parameters. The examples investigated in this study show the capacity for improved plant phenotyping based on an automated and simultaneous evaluation of growth and photosynthesis at high throughput.
Transgenic Petunia plants with a chsA coding sequence under the control of a 35S promoter sometimes lose endogene and transgene chalcone synthase activity and purple flower pigment through posttranscriptional chsA RNA degradation. In these plants, shorter poly(A)+ and poly(A)- chsA RNAs are found, and a 3' end-specific RNA fragment from the endogene is more resistant to degradation. The termini of this RNA fragment are located in a region of complementarity between the chsA 3' coding region and its 3' untranslated region. Equivalent chsA RNA fragments remain in the white flower tissue of a nontransgenic Petunia variety. We present a model involving cycles of RNA-RNA pairing between complementary sequences followed by endonucleolytic RNA cleavages to describe how RNA degradation is likely to be promoted.
Transgenic plants with reduced poly(ADP-ribose) polymerase (PARP) levels have broad-spectrum stress-resistant phenotypes. Both Arabidopsis thaliana and oilseed rape (Brassica napus) lines overexpressing RNA interference-PARP constructs were more resistant to various abiotic stress treatments in laboratory and greenhouse experiments without negative effects on growth, development, and seed production. This outperforming stress tolerance was initially attributed solely to a maintained energy homeostasis due to reduced NAD ؉ consumption. We show that in PARP2-deficient Arabidopsis plants, the observed abiotic stress resistance can also be explained by alterations in abscisic acid levels that facilitate the induction of a wide set of defense-related genes.gene expression ͉ protection ͉ transcriptome analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.