Background: Skin aging involves UVB-induced degeneration of the dermal extracellular matrix. Results: Estrogen induces epidermal growth factor expression in keratinocytes thereby stimulating hyaluronan synthase 3 and versican expression in dermal fibroblasts of UVB-irradiated skin. Conclusion: Paracrine release of epidermal growth factor in response to estrogen maintains hyaluronan and versican-rich extracellular matrix. Significance: Estrogen prevents specific aging responses in the hyaluronan matrix of photoaged skin.
Chronic UVB-exposure and declined estradiol production after menopause represent important factors leading to extrinsic and intrinsic aging, respectively. Remodeling of the extracellular matrix (ECM) plays a crucial role in both responses. Whether the dermal ECM is able to recover after cessation of UVB-irradiation in dependence of estradiol is not known, however of relevance when regarding possible treatment options. Therefore, the endogenous sex hormone production was depleted by ovariectomy in female mice. Half of the mice received estradiol substitution. Mice were UVB-irradiated for 20 weeks and afterwards kept for 10 weeks without irradiation. The collagen-, hyaluronan- and proteoglycan- (versican, biglycan, lumican) matrix, collagen cleavage products and functional skin parameters were analyzed. The intrinsic aging process was characterized by increased collagen fragmentation and accumulation of biglycan. Chronic UVB-irradiation additionally augmented the lumican, versican and hyaluronan content of the dermis. In the absence of further UVB-irradiation the degradation of collagen and accumulation of biglycan in the extrinsically aged group was perpetuated in an excessive matter. Whereas estradiol increased the proteoglycan content, it reversed the effects of the perpetuated extrinsic response on collagen degradation. Suspension of the intrinsic pathway might therefore be sufficient to antagonize UVB-evoked long-term damage to the dermal ECM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.