Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti–4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor–mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP–4-1BBL (RG7826) and CD19–4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen–mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP–4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer–bearing rhesus monkey. Combination of FAP–4-1BBL with tumor antigen–targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP– or CD19–4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+T cells. FAP– and CD19–4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.
Monoclonal antibodies (mAbs) and proteins containing antibody domains are the most prevalent class of biotherapeutics in diverse indication areas. Today, established techniques such as immunization or phage display allow for an efficient generation of new mAbs. Besides functional properties, the stability of future therapeutic mAbs is a key selection criterion which is essential for the development of a drug candidate into a marketed product. Therapeutic proteins may degrade via asparagine (Asn) deamidation and aspartate (Asp) isomerization, but the factors responsible for such degradation remain poorly understood. We studied the structural properties of a large, uniform dataset of Asn and Asp residues in the variable domains of antibodies. Their structural parameters were correlated with the degradation propensities measured by mass spectrometry. We show that degradation hotspots can be characterized by their conformational flexibility, the size of the C-terminally flanking amino acid residue, and secondary structural parameters. From these results we derive an accurate in silico prediction method for the degradation propensity of both Asn and Asp residues in the complementarity-determining regions (CDRs) of mAbs.
Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.
The mur4 mutant of Arabidopsis shows a 50% reduction in the monosaccharide L -Ara in leaf-derived cell wall material because of a partial defect in the 4-epimerization of UDP-D -Xyl to UDP-L -Ara. To determine the genetic lesion underlying the mur4 phenotype, the MUR4 gene was cloned by a map-based procedure and found to encode a type-II membrane protein with sequence similarity to UDP-D -Glc 4-epimerases. Enzyme assays of MUR4 protein expressed in the methylotropic yeast Pichia pastoris indicate that it catalyzes the 4-epimerization of UDP-D -Xyl to UDP-L -Ara, the nucleotide sugar used by glycosyltransferases in the arabinosylation of cell wall polysaccharides and wall-resident proteoglycans. Expression of MUR4-green fluorescent protein constructs in Arabidopsis revealed localization patterns consistent with targeting to the Golgi, suggesting that the MUR4 protein colocalizes with glycosyltransferases in the biosynthesis of arabinosylated cell wall components. The Arabidopsis genome encodes three putative proteins with Ͼ 76% sequence identity to MUR4, which may explain why mur4 plants are not entirely deficient in the de novo synthesis of UDP-L -Ara.
The degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101) in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393) in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies. In order to reduce the time for simultaneous identification and functional evaluation of potential asparagine deamidation and aspartate isomerization sites, a test system employing accelerated temperature conditions and proteolytic peptide mapping combined with quantitative UPLC-MS was developed. This method occupies the formulation buffer system histidine/HCl (20 mM; pH 6.0) for denaturation/reduction/digestion and eliminates the alkylation step. The achieved degree of asparagine deamidation and aspartate isomerization was adequate to identify the functional consequence by binding studies. In summary, the here presented approach greatly facilitates the evaluation of fermentation, purification, formulation, and storage conditions on antibody asparagine deamidation and aspartate isomerization by monitoring susceptible marker peptides located in the complementary-determining regions of recombinant antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.