Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher orders. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50-70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.
Recent findings provide evidence that fungal structures can be detected in brain tissue from Alzheimer’s disease (AD) patients using rabbit polyclonal antibodies raised against whole fungal cells. In the present work, we have developed and tested specific antibodies that recognize the fungal proteins, enolase and β-tubulin, and an antibody that recognizes the fungal polysaccharide chitin. Consistent with our previous studies, a number of rounded yeast-like and hyphal structures were detected using these antibodies in brain sections from AD patients. Some of these structures were intracellular and, strikingly, some were found to be located inside nuclei from neurons, whereas other fungal structures were detected extracellularly. Corporya amylacea from AD patients also contained enolase and β-tubulin as revealed by these selective antibodies, but were devoid of fungal chitin. Importantly, brain sections from control subjects were usually negative for staining with the three antibodies. However, a few fungal structures can be observed in some control individuals. Collectively, these findings indicate the presence of two fungal proteins, enolase and β-tubulin, and the polysaccharide chitin, in CNS tissue from AD patients. These findings are consistent with our hypothesis that AD is caused by disseminated fungal infection.
In medium and in homogenates from baby-hamster kidney cells (BHK) transfected with human cathepsin D cDNA, an elevated activity of cathepsin D was found as compared to non-transfected cells. The elevated activity was removed by titrating the homogenates with an anti-(human cathepsin D) antibody. Metabolic labelling and immunoprecipitation revealed that, in the transfected cells, human cathepsin D was synthesized as a 53-kDa precursor indistinguishable from that found in human cells. A portion of the precursor was secreted and the remainder was processed to intermediate and mature chains within a few hours of synthesis. The precursor that was released from the transfected cells had a slightly smaller apparent size than that from cultured human fibroblasts. This difference was abrogated when the precursors were treated with glycopeptidase F. In the intracellular small chain a difference was observed in the size of carbohydrate chains that were cleavable with endo-,l-N-acetylglucosaminidase H. Sequence analysis of the N-termini of mature intracellular cathepsin D indicated a N-terminal trimming in both large and small chains from both human and transfected hamster cells. The proteolytic maturation of human cathepsin D in BHK cells closely resembles that in human cells, whereas a portion of the carbohydrate side chains is processed differently. The trimmingof the N-termini in mature cathepsin D is proposed to be a part of the maturation and aging of this protein. INTRODUCTIONHuman cathepsin D is a lysosomal pepstatin-sensitive aspartic proteinase consisting of two polypeptides [1]. It is synthesized as a high-molecular-mass (53 kDa) precursor that is subject to maturation upon segregation from the secretory pathway [2]. In a cell-free system using porcine cathepsin D, cDNA synthesis of a preprocathepsin D with an N-terminal signal sequence has been demonstrated [3]. The amino acid sequence of human preprocathepsin D has been deduced from the nucleotide sequence of the corresponding cDNA [4][5][6]. Its sequence is similar
The segregation of human cathepsin D, studied in baby-hamster kidney cells (BHK) transfected with human cathepsin D cDNA and compared with that of hamster cathepsin D in the same cells, showed that, in cells that expressed human cathepsin D at a low rate, most of the enzyme remained intracellular. In contrast, when the enzyme was expressed at a high rate, most was secreted. The segregation was examined with an anti-(human cathepsin D) antibody that reacted with the human enzyme exclusively and an anti-(rat cathepsin D) antibody that reacted with both enzymes. In one protocol the cells were metabolically labelled and the two antibodies were used in sequence to precipitate the enzymes from extracts of cells and medium. High expression of the human enzyme did not interfere with the segregation of hamster cathepsin D. In another protocol the activity of cathepsin D in cells and medium was measured before and after titration with anti-(human cathepsin D) antiserum. Human cathepsin D was found predominantly in the medium, and hamster cathepsin D mainly in the cells. In the presence of 10 mM-NH4Cl the intracellular segregation of hamster cathepsin D was strongly inhibited, while the segregation of human cathepsin D was only slightly diminished. In BHK cells, at least two systems participate in the sorting of the two cathepsins, one of them being rather insensitive to NH4Cl.
Edwardsiella ictaluri is the cause of enteric septicemia of catfish. A monoclonal antibody (MAb AA224) was used to identify a specific and predominant outer-membrane antigen of E. ictaluri. The MAb AA224 was produced by conventional cell fusion technology with spleen cells from mice immunized with an affinity-purified antigen. The affinity-purified antigen was obtained by immunoaffinity chromatography of an E. ictaluri extract with immunoaffinity purified immunoglobin from sera of channel catfish let alums punctatus immune to E. ictaluri as a result of natural infection. The imrnunoaffinity-purified antigen was used for immunization and identification of the hybridoma producing MAb AA224 by enzyme-linked immunosorbent assay. The predominant antigen was purified by immunoaffinity chromatography with MAb AA224 as the immunoadsorbent. Immunoblotting and high-pressure liquid chromatography were used to determine that the relative sizes of the predominant antigens are 60 and 36 kilodaltons. Immunoelectron microscopy with MAb AA224 conjugated with colloidal gold localized the predominant antigen on the surface of the outer membrane of £. ictaluri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.