Abstract. An access-driven attack is a class of cache-based side channel analysis. Like the time-driven attack, the cache's timings are under inspection as a source of information leakage. Access-driven attacks scrutinize the cache behavior with a finer granularity, rather than evaluating the overall execution time. Access-driven attacks leverage the ability to detect whether a cache line has been evicted, or not, as the primary mechanism for mounting an attack. In this paper we focus on the case of AES and we show that the vast majority of processors suffer from this cache-based vulnerability. Our best results are indeed performed on a processor without the multi-threading capabilities -in contrast to previous works in this area that had suggested that multi-threading actually improved, or even made possible, this class of attack.Despite some technical difficulties required to mount such attacks, our work shows that access-driven cache-based attacks are becoming easier to understand and analyze. Also, when such attacks are mounted against systems performing AES, only a very limited number of encryptions are required to recover the whole key with a high probability of success, due to our last round analysis from the ciphertext.
Abstract. Cache attacks exploit side-channel information that is leaked by a microprocessor's cache. There has been a significant amount of research effort on the subject to analyze and identify cache side-channel vulnerabilities since early 2002. Experimental results support the fact that the effectiveness of a cache attack depends on the particular implementation of the cryptosystem under attack and on the cache architecture of the device this implementation is running on. Yet, the precise effect of the mutual impact between the software implementation and the cache architecture is still an unknown. In this manuscript, we explain the effect and present an analytical model for time-driven cache attacks that accurately forecasts the strength of a symmetric key cryptosystem based on 3 simple parameters: (1) the number of lookup tables; (2) the size of the lookup tables; (3) and the length of the microprocessor's cache line. The accuracy of the model has been experimentally verified on 3 different platforms with different implementations of the AES algorithm attacked by adversaries with different capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.