Is erosion important to the structural and petrological evolution of mountain belts? The nature of active metamorphic massifs colocated with deep gorges in the syntaxes at each end of the Himalayan range, together with the magnitude of erosional fluxes that occur in these regions, leads us to concur with suggestions that erosion plays an integral role in collisional dynamics. At multiple scales, erosion exerts an influence on a par with such fundamental phenomena as crustal thickening and extensional collapse. Erosion can mediate the development and distribution of both deformation and metamorphic facies, accommodate crustal convergence, and locally instigate high-grade metamorphism and melting.
Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1—the summer 2015 and winter 2016 growing seasons–of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project’s goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
[1] We examine the surges of five glaciers in the Pakistan Karakoram using satellite remote sensing to investigate the dynamic nature of surges in this region and how they may be affected by climate. Surface velocity maps derived by feature-tracking quantify the surge development spatially in relation to the terminus position, and temporally with reference to seasonal weather. We find that the season of surge initiation varies, that each surge develops gradually over several years, and that maximum velocities are recorded within the lowermost 10 km of the glacier. Measured peak surge velocities are between one and two orders of magnitude greater than during quiescence. We also note that two of the glaciers are of a type not previously reported to surge. The evidence points towards recent Karakoram surges being controlled by thermal rather than hydrological conditions, coinciding with high-altitude warming from long-term precipitation and accumulation patterns. Citation:
Abstract. Within the syntaxial bends of the India-Asia collision the Himalaya terminate abruptly in a pair of metamorphic massifs. Nanga Parbat in the west and Namche Barwa in the east are actively deforming antiformal domes which expose Quaternary metamorphic rocks and granites. The massifs are transected by major Himalayan rivers (Indus and Tsangpo) and are loci of deep and rapid exhumation. On the basis of velocity and attenuation tomography and microseismic, magnetotelluric, geochronological, petrological, structural, and geomorphic data we have collected at Nanga Parbat we propose a model in which this intense metamorphic and structural reworking of crustal lithosphere is a consequence of strain focusing caused by significant erosion within deep gorges cut by the Indus and Tsangpo as these rivers turn sharply toward the foreland and exit their host syntaxes. The localization of this phenomenon at the terminations of the Himalayan arc owes its origin to both regional and local feedbacks between erosion and tectonics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.