G protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the β2-adrenergic receptor (β2AR), a prototypical GPCR. We labeled β2AR with 13CH3ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for β2AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for β2AR’s ability to engage multiple signaling and regulatory proteins.
G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo-and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the 2-adrenergic receptor (2AR), can be incorporated into a reconstituted highdensity lipoprotein (rHDL) phospholipid bilayer particle together with the stimulatory heterotrimeric G protein, Gs. Single-molecule fluorescence imaging and FRET analysis demonstrate that a single 2AR is incorporated per rHDL particle. The monomeric 2AR efficiently activates Gs and displays GTP-sensitive allosteric ligandbinding properties. These data suggest that a monomeric receptor in a lipid bilayer is the minimal functional unit necessary for signaling, and that the cooperativity of agonist binding is due to G protein association with a receptor monomer and not receptor oligomerization.2-adrenergic receptor ͉ single-molecule spectroscopy ͉ oligomerization
G protein coupled receptors (GPCRs) are seven transmembrane proteins that mediate the majority of cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs1,2,3,4,5 reveal structural conservation extending from the orthosteric ligand binding site in the transmembrane core to the cytoplasmic G protein coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse, and therefore represents an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the β2 adrenergic receptor: a salt bridge linking extracellular loops (ECLs) 2 and 3. Small molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G protein activation (agonist, neutral antagonist, and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide new insight into the dynamic behavior of GPCRs not addressable by static, inactive-state crystal structures.
We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pHinduced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0 -9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5-10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry.single-molecule fluorescence spectroscopy ͉ protein conformations ͉ protein labeling ͉ confocal microscopy ͉ metalloprotein I n cellular signaling networks, rare conformations of proteins are believed to be crucial for determining outcomes of the entire system (1, 2). Traditional biophysical methods rely on ensemble averages, that is, measurements from a large number of molecules simultaneously. As a consequence, rare, but important, populations can be obscured and go undetected. Recent advances in singlemolecule methodology have allowed researchers to break the ensemble average and more thoroughly characterize the heterogeneity of biological samples (3). This report describes the application of the photon counting histogram (PCH) model (4-7), a fluorescence spectroscopy technique with single-molecule sensitivity, to study the conformational heterogeneity of cytochrome c as a function of pH.Fluorescence spectroscopy has long been an important methodology for studying the conformational states of proteins, which is commonly done either by measuring the intrinsic fluorescence of the protein (for example, tryptophan residues) or covalently attaching an external fluorophore to specific residues (8). The latter approach assumes that the fluorophore does not significantly perturb the protein under investigation and that the photophysical propertie...
In the presence of formaldehyde and a mild reducing agent, reductive methylation is known to achieve near complete dimethylation of protein amino groups under non-denaturing conditions, in aqueous media. Amino methylation of proteins is employed in mass spectrometric, crystallographic, and NMR studies. Where biosynthetic labeling is prohibitive, amino (13)C-methylation provides an attractive option for monitoring folding, kinetics, protein-protein and protein-DNA interactions by NMR. Here, we demonstrate two improvements over traditional (13)C-reductive methylation schemes: (1) By judicious choice of stoichiometry and pH, ε-aminos can be preferentially monomethylated. Monomethyl tags are less perturbing and generally exhibit improved resolution over dimethyllysines, and (2) By use of deuterated reducing agents and (13)C-formaldehyde, amino groups can be labeled with (13)CH(2)D tags. Use of deutero-(13)C-formaldehyde affords either (13)CHD(2), or (13)CD(3) probes depending on choice of reducing agent. Making use of (13)C-(2)H scalar couplings, we demonstrate a filtering scheme that eliminates natural abundance (13)C signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.