Phages 933W, BAA2326, 434, and λ are evolutionarily-related temperate lambdoid phages that infect Escherichia coli. Although these are highly-similar phages, BAA2326 and 933W naturally encode Shiga toxin 2 (Stx+), but phage 434 and λ do not (Stx−). Previous reports suggest that the 933W Stx+ prophage forms less stable lysogens in E. coli than does the Stx− prophages λ, P22, and 434. The higher spontaneous induction frequency of the Stx+ prophage may be correlated with both virulence and dispersion of the Stx2-encoding phage. Here, we examined the hypothesis that lysogen instability is a common feature of Stx+ prophages. We found in both the absence and presence of prophage inducers (DNA damaging agents, salts), the Stx+ prophages induce at higher frequencies than do Stx− prophages. The observed instability of Stx+ prophages does not appear to be the result of any differences in phage development properties between Stx+ and Stx− phages. Our results indicate that differential stability of Stx+ and Stx− prophages results from both RecA-dependent and RecA-independent effects on the intracellular concentration of the respective cI repressors.
bWater is a major route for infection of humans by exotoxin-producing bacteria, including Shiga toxin-producing Escherichia coli (STEC). While STEC has the potential to be present in nearly every type of water source, its distribution is sporadic, and an understanding of factors that govern its emergence and persistence within water is lacking. In this study, we examined the influence of microbe content on STEC persistence in freshwater. We found that depletion of microbes in the water leads to a considerable increase in the persistence of STEC, an effect that can be mitigated by adding grazing protists to the water. STEC strains appear to be more resistant to the impact of grazing protists than E. coli strains that lack the Shiga toxin (stx) gene. Our results demonstrate that the microcosm can dramatically influence the persistence of STEC in aquatic ecosystems and that the overall impact by microbes on STEC strains is fundamentally different from that of non-STEC strains of bacteria. Overall, these results provide insight into why STEC and possibly other exotoxin-producing bacterial pathogens display such variability in abundance, distribution, and persistence in aquatic ecosystems.
In a λimm434 lysogen, two proteins are expressed from the integrated prophage. Both are encoded by the same mRNA whose transcription initiates at the PRM promoter. One protein is the 434 repressor, needed for the establishment and maintenance of lysogeny. The other is Hex which is translated from an open reading frame that apparently partially overlaps the 434 repressor coding region. In the wild type host, disruption of the gene encoding Hex destabilizes λimm434 lysogens. However, the hex mutation has no effect on lysogen stability in a recA− host. These observations suggest that Hex functions by modulating the ability of RecA to stimulate 434 repressor autocleavage. We tested this hypothesis by identifying and purifying Hex to determine if this protein inhibited RecA‑stimulated autocleavage of 434 repressor in vitro. Our results show that in vitro a fragment of Hex prevents RecA-stimulated autocleavage of 434 repressor, as well as the repressors of the closely related phage P22. Surprisingly, Hex does not prevent RecA‑stimulated autocleavage of phage lambda repressor, nor the E. coli LexA repressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.