PbSeTe-based quantum dot superlattice structures grown by molecular beam epitaxy have been investigated for applications in thermoelectrics. We demonstrate improved cooling values relative to the conventional bulk (Bi,Sb)2(Se,Te)3 thermoelectric materials using a n-type film in a one-leg thermoelectric device test setup, which cooled the cold junction 43.7 K below the room temperature hot junction temperature of 299.7 K. The typical device consists of a substrate-free, bulk-like (typically 0.1 millimeter in thickness, 10 millimeters in width, and 5 millimeters in length) slab of nanostructured PbSeTe/PbTe as the n-type leg and a metal wire as the p-type leg.
A central challenge in developing quantum computers and long-range quantum networks lies in the distribution of entanglement across many individually controllable qubits 1 . Colour centres in diamond have emerged as leading solid-state 'artificial atom' qubits 2,3 , enabling on-demand remote entanglement 4 , coherent control of over 10 ancillae qubits with minute-long coherence times 5 , and memory-enhanced quantum communication 6 . A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. To date, these efforts have been stymied by qubit inhomogeneities, low device yield, and complex device requirements. Here, we introduce a process for the high-yield heterogeneous integration of 'quantum micro-chiplets' (QMCs) -diamond waveguide arrays containing highly coherent colour centreswith an aluminium nitride (AlN) photonic integrated circuit (PIC). Our process enables the development of a 72-channel defect-free array of germanium-vacancy (GeV) and silicon-vacancy (SiV) colour centres in a PIC. Photoluminescence spectroscopy reveals long-term stable and narrow average optical linewidths of 54 MHz (146 MHz) for GeV (SiV) emitters, close to the lifetime-limited linewidth of 32 MHz (93 MHz). Additionally, inhomogeneities in the individual qubits can be compensated in situ with integrated tuning of the optical frequencies over 100 GHz. The ability to assemble large numbers of nearly indistinguishable artificial atoms into phase-stable PICs provides an architecture toward multiplexed quantum repeaters 7,8 and general-purpose quantum computers [9][10][11] . Main textArtificial atom qubits in diamond combine minute-scale quantum memory times 5 with efficient spin-photon interfaces 2 , making them attractive for processing and distributing quantum information 1,3 . However, the low device yield of functional qubit systems presents a critical barrier to large-scale quantum information processing (QIP). Furthermore, although individual diamond cavity systems coupled to artificial atoms can now achieve excellent performance, the lack of active chip-integrated photonic components and wafer-scale single crystal diamond currently prohibit scaling to large-scale QIP applications [8][9][10][11] . A promising method to alleviate these constraints is heterogeneous integration (HI), which is increasingly used in advanced microelectronics to assemble separately fabricated sub-components into a single, multifunctional chip. HI approaches have also recently been used to integrate PICs with quantum devices, including quantum dot single-photon sources 12,13 , superconducting nanowire single-photon detectors 14 , and nitrogen-vacancy (NV) centre diamond waveguides 15 . However, these demonstrations assembled components one-by-one, which presents a formidable scaling challenge. The diamond 'quantum micro-chiplet (QMC)' introduced here significantly improves HI assembly yield and accuracy to enable a 72-channel defect-free waveguide-coupled art...
The past decade has seen great advances in developing color centers in diamond for sensing, quantum information processing, and tests of quantum foundations. Increasingly, the success of these applications as well as fundamental investigations of light-matter interaction depend on improved control of optical interactions with color centers -from better fluorescence collection to efficient and precise coupling with confined single optical modes. Wide ranging research efforts have been undertaken to address these demands through advanced nanofabrication of diamond. This review will cover recent advances in diamond nano-and microphotonic structures for efficient light collection, color center to nanocavity coupling, hybrid integration of diamond devices with other material systems, and the wide range of fabrication methods that have enabled these complex photonic diamond systems. CONTENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.