In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8 T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity.
The authors noticed an error in this paper in which an amino acid sequence of the NVY mimotope utilized in this work was incorrectly designated in the main text and the STAR Methods (within the ''Virus for Vaccination'' section) as NVYDNFLL. The correct sequence is NVYDFNLL. The authors regret the oversight and apologize for any confusion this may have caused.
We present a pipeline for the conversion of 3D models into a form suitable for isogeometric analysis (IGA). The input into our pipeline is a boundary represented 3D model, either as a triangulation or as a collection of trimmed nonuniform rational B-spline (NURBS) surfaces. The pipeline consists of three stages: computer aided design (CAD) model reconstruction from a triangulation (if necessary); segmentation of the boundary-represented solid into topological hexahedra; and volume parameterization. The result is a collection of volumetric NURBS patches. In this paper we discuss our methods for the three stages, and demonstrate the suitability of the result for IGA by performing stress simulations with examples of the output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.