To date, COVID-19 has claimed more than 100 000 American lives. Early inquiry suggests preexisting conditions are key risk factors contributing to COVID-19 mortality and air pollution exposure could exacerbate this relationship. Building on prior research linking deaths from respiratory viruses to air pollution exposures, we investigate how 2014 National Air Toxics Assessment hazardous air pollutants (HAPs) respiratory hazard quotient and respiratory hazard index are related to COVID-19 mortality. Our focus on HAPs builds upon the knowledge base linking poor air quality to COVID-19 mortality, since most (if not all) earlier studies only include criteria pollutants. Herein, we examine the relationship between HAP exposure and US-based COVID-19 mortality, while controlling for socioeconomic status, population health indicators, and exposure to PM2.5 and ozone. We fit county-level negative binomial mixed models, predicting COVID-19 mortality as a function of HAP respiratory toxicity levels and relevant covariates. We include models for combined exposure to HAPs, as well as for specific pollutants. We find that an increase in the respiratory hazard index is associated with a 9% increase in COVID-19 mortality. Although differing in magnitude, this association holds for individual HAPs acetaldehyde, and diesel PM. These findings help us to understand variation in US-based COVID-19 mortality rates, reinforce existing research linking air pollution to mortality, and emphasize the importance of regulatory efforts to limit air pollution exposure risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.