Grocery shoppers must negotiate cluttered, crowded, and complex store layouts containing a vast variety of products to make their intended purchases. This complexity may prevent even experienced shoppers from finding their grocery items, consuming a lot of their time and resulting in monetary loss for the store. To address these issues, we present a generic grocery robot architecture for the autonomous search and localization of products in crowded dynamic unknown grocery store environments using a unique context Simultaneous Localization and Mapping (contextSLAM) method. The contextSLAM method uniquely creates contextually rich maps through the online fusion of optical character recognition and occupancy grid information to locate products and aid in robot localization in an environment. The novelty of our robot architecture is in its ability to intelligently use geometric and contextual information within the context map to direct robot exploration in order to localize products in unknown environments in the presence of dynamic people. Extensive experiments were conducted with a mobile robot to validate the overall architecture and contextSLAM, including in a real grocery store. The results of the experiments showed that our architecture was capable of searching for and localizing all products in various grocery lists in different unknown environments.
For older adults, regular exercises can provide both physical and mental benefits, increase their independence, and reduce the risks of diseases associated with aging. However, only a small portion of older adults regularly engage in physical activity. Therefore, it is important to promote exercise among older adults to help maintain overall health. In this paper, we present the first exploratory long-term human–robot interaction (HRI) study conducted at a local long-term care facility to investigate the benefits of one-on-one and group exercise interactions with an autonomous socially assistive robot and older adults. To provide targeted facilitation, our robot utilizes a unique emotion model that can adapt its assistive behaviors to users’ affect and track their progress towards exercise goals through repeated sessions using the Goal Attainment Scale (GAS), while also monitoring heart rate to prevent overexertion. Results of the study show that users had positive valence and high engagement towards the robot and were able to maintain their exercise performance throughout the study. Questionnaire results showed high robot acceptance for both types of interactions. However, users in the one-on-one sessions perceived the robot as more sociable and intelligent, and had more positive perception of the robot’s appearance and movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.