To effectively communicate with people, social robots must be capable of detecting, interpreting, and responding to human affect during human–robot interactions (HRIs). In order to accurately detect user affect during HRIs, affect elicitation techniques need to be developed to create and train appropriate affect detection models. In this paper, we present such a novel affect elicitation and detection method for social robots in HRIs. Non-verbal emotional behaviors of the social robot were designed to elicit user affect, which was directly measured through electroencephalography (EEG) signals. HRI experiments with both younger and older adults were conducted to evaluate our affect elicitation technique and compare the two types of affect detection models we developed and trained utilizing multilayer perceptron neural networks (NNs) and support vector machines (SVMs). The results showed that; on average, the self-reported valence and arousal were consistent with the intended elicited affect. Furthermore, it was also noted that the EEG data obtained could be used to train affect detection models with the NN models achieving higher classification rates
For older adults, regular exercises can provide both physical and mental benefits, increase their independence, and reduce the risks of diseases associated with aging. However, only a small portion of older adults regularly engage in physical activity. Therefore, it is important to promote exercise among older adults to help maintain overall health. In this paper, we present the first exploratory long-term human–robot interaction (HRI) study conducted at a local long-term care facility to investigate the benefits of one-on-one and group exercise interactions with an autonomous socially assistive robot and older adults. To provide targeted facilitation, our robot utilizes a unique emotion model that can adapt its assistive behaviors to users’ affect and track their progress towards exercise goals through repeated sessions using the Goal Attainment Scale (GAS), while also monitoring heart rate to prevent overexertion. Results of the study show that users had positive valence and high engagement towards the robot and were able to maintain their exercise performance throughout the study. Questionnaire results showed high robot acceptance for both types of interactions. However, users in the one-on-one sessions perceived the robot as more sociable and intelligent, and had more positive perception of the robot’s appearance and movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.