Studies are described on the metabolism and toxicological analysis of the phenethylamine-derived designer drug 2,5-dimethoxy-4-propylthio-beta-phenethylamine (2C-T-7) in rat urine using gas chromatography/mass spectrometry (GC/MS). The identified metabolites indicated that 2C-T-7 was metabolized by hydroxylation of the propyl side chain followed by N-acetylation and sulfoxidation and also by deamination followed by oxidation to the corresponding acid or by reduction to the corresponding alcohol. To a minor extent, 2C-T-7 was also metabolized by S-dealkylation followed by N-acetylation, S-methylation and sulfoxidation. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-T-7 in rat urine that corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-T-7 in human urine.
Studies are described on the metabolism and the toxicological analysis of the phenethylamine-derived designer drug 2,5-dimethoxy-4-ethylthio-beta-phenethylamine (2C-T-2) in rat urine using gas chromatography/mass spectrometry (GC/MS) after enzymatic cleavage of conjugates, liquid-liquid extraction and derivatization. The structures of 14 metabolites were assigned tentatively by detailed interpretation of their mass spectra. Identification of these metabolites indicated that 2C-T-2 was metabolized by sulfoxidation followed by N-acetylation and either hydroxylation of the S-ethyl side chain or demethylation of one methoxy group, O-demethylation of the parent compound followed by N-acetylation and sulfoxidation, deamination followed by reduction to the corresponding alcohol followed by partial glucuronidation and/or sulfation or by oxidation to the corresponding acid followed either by partial glucuronidation or by degradation to the corresponding benzoic acid derivative followed by partial glucuronidation. Furthermore, 2C-T-2 was metabolized by N-acetylation of the parent compound followed either by O-demethylation and sulfoxidation or by S-dealkylation, S-methylation and sulfoxidation. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction microwave-assisted acetylation allowed the detection of an intake of a dose of 2C-T-2 in rat urine, which corresponds to a common drug users' dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-T-2 in human urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.