Killer Ig-like receptors (KIR) and HLA class I ligands were studied in unrelated hemopoietic stem cell transplantation for chronic myeloid leukemia (n = 108). Significantly improved overall survival was observed in patients, which were homozygous for HLA-C-encoded group 1 (C1) ligands compared with those with group 2 (C2) ligands. Favorable outcome in the former patient group was an early effect that was highly significant in patients transplanted with G-CSF-mobilized peripheral blood and patients with advanced disease stages. In contrast, presence of C1 ligands in the donor was associated with significantly reduced patient survival. The differential roles of the two HLA-C ligands are explained in the context of a biased NK cell reconstitution, which is generally dominated by the presence of C1- but absence of C2-specific NK cells. The clinical observations are corroborated by in vitro experiments showing that NK cells derived from hemopoietic progenitor cells generally acquire the C1-specific inhibitory KIR2DL2/3 at earlier time points and with higher frequency than the C2-specific KIR2DL1. These findings define a novel determinant for understanding the role of NK cells in clinical hemopoietic stem cell transplantation.
The expression of the histo-blood group carbohydrate structures T-nouvelle (Tn, CD175), sialylated Tn (CD175s) and the Thomsen-Friedenreich disaccharide (TF, CD176) on human leukemia cell lines was analyzed by their reactivity with specific monoclonal antibodies in flow cytometry, immunohistology and immunoprecipitation. Expression of sialylated CD176 was evaluated by comparative immunostaining with anti-CD176 antibodies before and after sialidase treatment. While only few cell lines expressed unmasked CD176, sialylated CD176 was present on all hematopoietic cell lines and native lymphocytes examined. CD175 and CD175s are preferentially expressed on erythroblastic leukemia cell lines. CD175s expression in these cells is consistent with the transcription of the gene encoding the key enzyme a2,6-sialyltransferase (hST6GalNAc1). The staining intensity was reduced after methanol pretreatment of cells, indicating that these glycans are partially expressed as constituents of glycosphingolipids. Immunoprecipitation and subsequent Western blotting revealed a series of distinct high molecular glycoproteins as carriers for these carbohydrate antigens. CD34 was identified as major carrier of CD176 by immunoprecipitation and microsequencing on a KG-1 subline enriched for CD176 expression. Incubation of several CD176-positive cell lines with anti-CD176 antibodies induced apoptosis of these cells, an effect not observed with anti-CD175/ CD175s antibodies. Since the presence of naturally occurring anti-CD176 antibodies may represent a mechanism of immunosurveillance against CD176-positive tumor cells, we propose that sialylation of surface-expressed CD176-among other functionsprotects against apoptosis.
It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive whether primitive hematopoietic cells in mammals actually can divide asymmetrically. In our experiments we have challenged this question and analyzed the developmental capacity of separated offspring of primitive human hematopoietic cells at a single-cell level. We show for the first time that the vast majority of the most primitive, in vitro-detectable human hematopoietic cells give rise to daughter cells adopting different cell fates; 1 inheriting the developmental capacity of the mother cell, and 1 becoming more specified. In contrast, approximately half of the committed progenitor cells studied gave rise to daughter cells, both of which adopted the cell fate of their mother. Although our data are compatible with the model of asymmetric cell division, other mechanisms of cell fate specification are discussed. In addition, we describe a novel human hematopoietic progenitor cell that has the capacity to form natural killer (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.