Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course.
While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF), yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus. Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), and rhamnolipids—each required for efficient killing of S. aureus. These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureus.
The cognitive interview utilizes mnemonic instructions and social facilitative techniques to increase correct recall from eyewitnesses without concomitant increases in errors. Recent studies however have suggested that police may neglect this technique in time-critical situations. The present study investigated mnemonic components to determine whether a shorter, but still effective, technique was possible. Forty-five participants viewed a film of a simulated crime and were interviewed with one of three techniques: the cognitive interview; a modified version that replaced the change order and change perspectives techniques with additional free recall attempts; or a structured interview. It was hypothesized that the modified technique would be as effective as the cognitive interview, while both would be superior to the structured interview. Results supported these hypotheses. Further analysis suggested that a shortened version, with the two mnemonics removed, may substantially reduce interviewing time while still offering an effective interview strategy in time-critical situations.
Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.
An investigator blind trial was performed comparing bismuth salicylate, erythromycin ethylsuccinate, and placebo in the treatment of Campylobacter pyloridis associated gastritis in patients without peptic ulceration. Fifty patients fulfilled the study criteria. There was a strong correlation between the presence of C pyloridis and histologically confirmed gastritis. Clearance of organisms led to improvement of the gastritis. C pyloridis was cleared from 15 patients; ofthese, 13 had gastritis initially, which resolved in 12. Conversely, gastritis resolved in only four of 32 patients not cleared of organisms (p<0-0001). There was significantly greater improvement in endoscopic appearances in the patients cleared of C pyloridis compared with those whose infection persisted (p<0-001). In the three treatment groups organisms were cleared from 14 of 18 patients receiving the locally active bismuth salicylate, only one of 15 patients receiving erythromycin ethylsuccinate, and none of 17 patients taking placebo.These findings suggest that the ideal antimicrobial for the successful eradication of C pyloridis associated gastritis should be locally active, stable at low pH, and should penetrate gastric mucus. The resolution of gastritis and improvement in endoscopic appearances associated with clearance of C pyloridis support the view that these organisms may play a part in this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.