Thalidomide is approved in the United States for treating erythema nodosum leprosum, a complication of leprosy. The present study determined the single-dose oral pharmacokinetics and dose proportionality from 50 to 400 mg of Celgene's commercial Thalomid thalidomide formulation in an open-label, single-dose, three-way crossover study. Fifteen healthy subjects were given 50, 200, and 400 mg of thalidomide on three occasions, and blood samples were collected over 48 hours. Pharmacokinetic parameters were determined using noncompartmental methods, and dose proportionality was assessed by linear regression of dose-normalized Cmax and AUC0-infinity. No serious or unexpected adverse events occurred. The most common adverse events were dizziness, somnolence, headache, and nausea. One patient was discontinued because of pharyngitis. There was a significant deviation from proportionality for Cmax with increases being less than proportional than changes in dose. AUC0-infinity increased proportionally with dose, suggesting that the overall amount of thalidomide absorbed, as well as its clearance, is independent of dose over the range used. V/F was found to increase with dose. This was most likely due to the terminal rate constant, which is used to calculate V/F, actually representing the absorption process rather than elimination (i.e., flip-flop phenomenon). The terminal rate constant (absorption rate constant) for the highest dose was 50% less than for the other two lower doses. The less than proportional increases in Cmax were most likely due to thalidomide's low aqueous solubility. Thalidomide shows reasonable dose proportionality with respect to AUC from 50 to 400 mg.
The effect of food on the oral pharmacokinetics of thalidomide and the relative bioavailability of two oral thalidomide formulations were determined in an open label, single dose, randomized, three-way crossover study. Five male and eight female healthy volunteers received a single oral dose of 200 mg Celgene thalidomide capsules under fasted and non-fasted conditions, and a single dose of 200 mg tablets of Serral thalidomide under fasted conditions. The high-fat meal resulted in a 0.5-1.5 h absorption lag time, an increased mean C(max), a decreased mean AUC and a delay in mean T(max). The Serral tablet formulation resulted in a lower mean C(max), and slower terminal decline in plasma thalidomide concentrations compared with both Celgene treatments. Mean C(max) concentrations were 1.99+/-0.41 microg/mL (range 1.28-2.76) within 4.00+/-1.13 h (2-5) for the Celgene formulation fasted, 2.17+/-0.51 microg/mL (1.43-3.01) within 6.08+/-2.33 h (3-12) for the Celgene formulation with food, and 1. 05+/-0.31 microg/mL (0.62-1.65) within 6.23+/-1.88 h (5-10) for the Serral formulation fasted. Mean terminal half-lives were 13.50+/-6. 77 h for the Serral product, compared with 5.80+/-1.72 h and 5. 09+/-1.03 h for Celgene fasted and fed, respectively. Celgene's formulation exhibited slightly greater bioavailability than Serral's formulation, with mean ratios of 122% and 110% for Ln-transformed AUC(0-t) and AUC(0-infinity), respectively. The mean C(max) for the Celgene formulation was approximately two times greater than Serral's. Food delayed the onset of absorption of by 0.5-1.5 h, but had little effect on the extent of absorption from the Celgene capsule. Under fasted conditions, the Celgene thalidomide resulted in a two-fold greater C(max) and 10% greater AUC(0-infinity) than the Serral formulation.
Multiple-dose pharmacokinetics of thalidomide is similar to the single-dose profile. This study did not investigate the efficacy of the 21-day fixed ethinyl estradiol-norethindrone regimen, but the results suggest that thalidomide is unlikely to affect the pharmacokinetics of orally administered hormonal contraceptives.
Attention deficit hyperactivity disorder (ADHD) in children is effectively treated by racemic oral methylphenidate (dl-MPH). The d-isomer (d-MPH) has been developed as an improved treatment for ADHD since only half the racemic dose is used. This study, performed in healthy subjects, assessed the effect of food on the pharmacokinetics of dexmethylphenidate hydrochloride (d-MPH HCl) in a single dose (2 x 10-mg tablets), two-way crossover with d-MPH administered to subjects in both a fasting state or after a high-fat breakfast. There were no serious or unexpected adverse events during the course of this study, with most events reported in comparable numbers of fed and fasted subjects. The bioequivalence of d-MPH was similar with or without food, with 90% confidence intervals of 88.2% to 104.6% and 105.9% to 118.2% for ln(C(max)) and ln[(AUC(0-infinity))], respectively. There was a marginal but statistically significant 1-hour increase in t(max) in the fed versus fasted state, reflecting an absorption delay. The rate of formation of the major metabolite, d-ritalinic acid (d-RA), was marginally decreased ( approximately 14%) after food. The extent of exposure to d-RA was similar (within 1.2%) between both treatments. There was a marginal but statistically significant difference in mean t(max) for d-RA between fed and fasted conditions, with peak concentration occurring 1.5 hours later after d-MPH administration with food. There was no measurable in vivo chiral inversion of d-MPH to l-MPH in plasma. In addition, the metabolism of d-MPH was stereospecific as d-MPH only produced d-RA. In summary, food had no substantial effect on the bioavailability of d-MPH, with an equivalent rate and extent of exposure obtained. Therefore, d-MPH can be administered without regard to food intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.