Lake Victoria is the largest lake in Africa and harbors more than 300 endemic species of haplochromine cichlid fish. Seismic reflection profiles and piston cores show that the lake not only was at a low stand but dried up completely during the Late Pleistocene, before 12,400 carbon-14 years before the present. These results imply that the rate of speciation of cichlid fish in this tropical lake has been extremely rapid.
The environmental backdrop to the evolution and spread of early Homo sapiens in East Africa is known mainly from isolated outcrops and distant marine sediment cores. Here we present results from new scientific drill cores from Lake Malawi, the first long and continuous, high-fidelity records of tropical climate change from the continent itself. Our record shows periods of severe aridity between 135 and 75 thousand years (kyr) ago, when the lake's water volume was reduced by at least 95%. Surprisingly, these intervals of pronounced tropical African aridity in the early latePleistocene were much more severe than the Last Glacial Maximum (LGM), the period previously recognized as one of the most arid of the Quaternary. From these cores and from records from Lakes Tanganyika (East Africa) and Bosumtwi (West Africa), we document a major rise in water levels and a shift to more humid conditions over much of tropical Africa after Ϸ70 kyr ago. This transition to wetter, more stable conditions coincides with diminished orbital eccentricity, and a reduction in precession-dominated climatic extremes. The observed climate mode switch to decreased environmental variability is consistent with terrestrial and marine records from in and around tropical Africa, but our records provide evidence for dramatically wetter conditions after 70 kyr ago. Such climate change may have stimulated the expansion and migrations of early modern human populations.human origins ͉ Lake Malawi ͉ paleoclimate ͉ Pleistocene
SUMMARY1. Lake Victoria endured multiple stresses over the past century including population growth, increased cultivation of land, meteorological variability, resource extraction, intensive fishing, introduction of exotic species and more recently climate warming. These stressors became manifest through a fundamental and rapid change in the fish community and fishery in the early 1980s and visible eutrophication. However, the relation of these two phenomena and the possible interaction of the multiple stressors have been difficult to establish because of the temporally fragmented nature of the environmental data. 2. Comprehensive limnological observations from the 1960s were repeated in the 1990s and established the eutrophication of the lake, but these do not provide insight to the time course of when changes in trophic state occurred. Comprehensive fishery catch data from 1965 to the present provide a time course of the change in community composition and yield but cannot be correlated in time with discontinuous and sparse limnological data to determine possible cause-effect relationships. 3. Palaeolimnologic studies were conducted on three cores, two offshore and one nearshore, to establish a time course for the eutrophication of the lake that can be related to time-based data on the fishery. In the 1920s, the cores recorded an increase in nitrogen content of the sediments, but there was no significant response in the paleo-productivity indicators of biogenic Si deposition and change d 13 C of deposited organic matter.Phosphorus deposition began to increase in the 1940s in all three cores after which biogenic Si deposition increased steadily over time. Responses in d 13 C of organic matter begin in the 1960s at the coring sites. In the 1970s, the d 13 C of organic matter at the nearshore site increased nearly 3& in a 10-year period likely as a response to a dramatic increase in internal P loading caused by spreading anoxia. 4. Nile perch, the large predatory fish introduced in 1954, had become established through much of the lake at low abundances by the 1970s. In 1980, the catch of this fish began to increase, and by the end of the decade, the Lake Victoria fishery was the largest lake fishery in the world; and Nile perch dominated the catch. While catches of some other fishes also increased, the endemic haplochromines suffered a catastrophic decline in abundance and loss of biodiversity. 5. The detailed chronostratigraphies for these sediment cores established that the major changes in the trophic condition of the lake were accomplished prior to the change in the fish community and that the increased primary productivity of the lake likely contributed to the increased fish catches after 1980. The increased algal abundance also would have greatly reduced visibility and facilitated the emergence of Nile perch as the dominant top predator. 6. Thematic implications: multiple stresses were present in Lake Victoria over several decades, but transition to a new ecosystem state with a transformed food web and high...
Lake Victoria, the largest tropical lake in the world, suffers from severe eutrophication and the probable extinction of up to half of its 500+ species of endemic cichlid fishes. The continuing degradation of Lake Victoria's ecological functions has serious long-term consequences for the ecosystem services it provides, and may threaten social welfare in the countries bordering its shores. Evaluation of recent ecological changes in the context of aquatic food-web alterations, catchment disturbance and natural ecosystem variability has been hampered by the scarcity of historical monitoring data. Here, we present highresolution palaeolimnological data, which show that increases in phytoplankton production developed from the 1930s onwards, which parallels human-population growth and agricultural activity in the Lake Victoria drainage basin. Dominance of bloom-forming cyanobacteria since the late 1980s coincided with a relative decline in diatom growth, which can be attributed to the seasonal depletion of dissolved silica resulting from 50 years of enhanced diatom growth and burial. Eutrophication-induced loss of deep-water oxygen started in the early 1960s, and may have contributed to the 1980s collapse of indigenous fish stocks by eliminating suitable habitat for certain deep-water cichlids. Conservation of Lake Victoria as a functioning ecosystem is contingent upon large-scale implementation of improved land-use practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.