The photoinitiated cationic ring-opening polymerizations of certain epoxides and 3,3-disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities.
Appropriate surface attachment is essential for growing embryonic stem (ES) cells in an undifferentiated state. It is challenging to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a rapid, high-throughput polymerization and screening platform with a comprehensive library of 66 monomer-grafted membrane surfaces, the optimal substrate, N-[3-(dimethylamino)propyl] methacrylamide (DMAPMA) has been identified to support strong attachment, high expansion capacity, and long-term self-renewal of ES cells (up to 7 passages). This monomer-based, chemically defined, scalable, sustainable, relatively inexpensive, covalently grafted, and controllable polymeric substrate provides a new opportunity to manipulate surface chemistry for pluripotent stem culture.
Photoactivated cationic ring‐opening polymerizations of certain oxirane and oxetane monomers take place in a frontal manner. The study of the frontal behavior of those monomers was conducted using a new analytical technique involving optical pyrometry that provides insight into the mechanism of these polymerizations.
Studies of the photoinitiated cationic ringopening polymerizations of epoxide and oxetane monomers were conducted using optical pyrometry. Using this technique, the temperature of these photopolymerizations was monitored as a function of time. The effects of photoinitiator type and monomer structure on the rates of photopolymerization were investigated. Optical pyrometry was also used to investigate the acceleration of the photopolymerizations of various epoxide and oxetane monomers. Certain mixtures of monomers displayed synergistic effects that markedly increased their overall rates of polymerizations. In all cases in which acceleration of polymerization rate was noted, it could be attributed to an increase in the speed of ring opening of the initially formed protonated cyclic ether. The effects of relative humidity on the rate of cationic ringopening photopolymerizations of cyclic ether monomers were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.