Appropriate surface attachment is essential for growing embryonic stem (ES) cells in an undifferentiated state. It is challenging to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a rapid, high-throughput polymerization and screening platform with a comprehensive library of 66 monomer-grafted membrane surfaces, the optimal substrate, N-[3-(dimethylamino)propyl] methacrylamide (DMAPMA) has been identified to support strong attachment, high expansion capacity, and long-term self-renewal of ES cells (up to 7 passages). This monomer-based, chemically defined, scalable, sustainable, relatively inexpensive, covalently grafted, and controllable polymeric substrate provides a new opportunity to manipulate surface chemistry for pluripotent stem culture.
A previously screened "hit chemistry" (N-[3-(dimethylamino)propyl] methacrylamide) that supports strong attachment and long-term self-renewal of ES cells is selected and grafted to poly(ether sulfone) (PES) fibrous matrices through plasma-induced graft polymerization. The 3D modified fibers exhibit higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D membranes. It is the first demonstration of scaling up an optimal synthetic surface chemistry in 2D using a high throughput synthesis, screening, and selection method to 3D that strongly influences pluripotent stem cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.