Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or 'evolutionary signatures', dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre-and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies.The sequencing of the human genome and the genomes of dozens of other metazoan species has intensified the need for systematic methods to extract biological information directly from DNA sequence. Comparative genomics has emerged as a powerful methodology for this endeavour 1,2 . Comparison of few (two-four) closely related genomes has proven successful for the discovery of protein-coding genes 3-5 , RNA genes 6,7 , miRNA genes 8-11 and catalogues of regulatory elements 3,4,12-14 . The resolution and discovery power of these studies should increase with the number of genomes [15][16][17][18][19][20] , in principle enabling the systematic discovery of all conserved functional elements.The fruitfly Drosophila melanogaster is an ideal system for developing and evaluating comparative genomics methodologies. Over the past century, Drosophila has been a pioneering model in which many of the basic principles governing animal development and population biology were established 21 . In the past decade, the genome sequence of D. melanogaster provided one of the first systematic views *These authors contributed equally to this work. {Lists of participants and affiliations appear at the end of the paper.
Key Points
Question
What is the agreement of automatically determined endoscopic severity of ulcerative colitis using deep learning models compared with expert human reviewers?
Findings
In this diagnostic study including colonoscopy data from 3082 adults, performance of a deep learning model for distinguishing moderate to severe disease from remission compared with multiple expert reviewers was excellent, with an area under the receiver operating curve of 0.97 using still images and full-motion video.
Meaning
Deep learning offers a practical and scalable method to provide objective and reproducible assessments of endoscopic disease severity for patients with ulcerative colitis.
AbstTact-Multiple antenna systems are a useful way of overcoming the effects of multipath interference, and can allow more efficient use of spectrum. In order to test the effectiveness of various algorithms such as diversity combining, phased array processing, and adaptive array processing in an indoor environment, a channel model is needed which models both the time and angle of arrival in indoor environments. Some data has been collected indoors and some temporal models have been proposed, but no existing model accounts for both time and angle of arrival. This paper discusses existing models for the time of arrival, experimental data that were collected indoors, and a proposed extension of the Saleh-Valenzuela model [l], which accounts for the angle of arrival. Model parameters measured in two different buildings are compared with the parameters presented in the paper by Saleh and Valenzuela, and some statistical validation of the model is presented.
E. coli bacteremia can be a life-threatening complication of TRUS biopsy. Infecting strains are frequently multidrug-resistant and resistant to common empirical antibiotic agents. E. coli ST131 is an important cause of sepsis after TRUS biopsy. Further studies should evaluate colonization with fluoroquinolone-resistant E. coli as a risk factor for postbiopsy sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.