Car Periphery Supervision (CPS) systems comprise a family of automotive systems that are based on sensors installed around the vehicle to monitor its environment. The measurement and evaluation of sensor data enables the realization of several kinds of higher level applications such as parking assistance or blind spot detection. Although a lot of similarity can be identified among CPS applications, these systems are traditionally built separately. Usually, each single system is built with its own electronic control unit, and it is likely that the application software is bound to the controller's hardware. Current systems engineering therefore often leads to a large number of inflexible, dedicated systems in the automobile that together consume a large amount of power, weight, and installation space and produce high manufacturing and maintenance costs. This paper reports on an initiative undertaken by the Bosch Group in applying a product line development approach to develop CPS systems economically. Product line development represents a multi-system engineering approach which takes common and variable aspects between systems in the same application domain into account. It provides a basis to develop a line of products economically based on a common system architecture and reusable components.A product line allows the degree of reusability to be optimized across different systems while simultaneously preserving the overall quality. This supports the need to develop more integrated and flexible multi-functional systems quickly and cost-effectively. The purpose of this paper is to report on the experiences and results obtained from a case study in developing a product line of CPS systems.
This purpose of this study was to replicate foot-ankle injuries seen in the military and derive human injury probability curves using the human cadaver model. Lower legs were isolated below knee from seventeen unembalmed human cadavers and they were aligned in a 90-90 posture (plantar surface orthogonal to leg). The specimens were loaded along the tibia axis by applying short-time duration pulses, using a repeated testing protocol. Injuries were documented using pre- and post-test X-rays, computed tomography scans, and dissection. Peak force-based risk curves were derived using survival analysis and accounted for data censoring. Fractures were grouped into all foot-ankle (A), any calcaneus (B), and any tibia injuries (C), respectively. Calcaneus and/or distal tibia/pilon fractures occurred in fourteen tests. Axial forces were the greatest and least for groups C and B, respectively. Times attainments of forces for all groups were within ten milliseconds. The Weibull function was the optimal probability distribution for all groups. Age was significant (p < 0.05) for groups A and C. Survival analysis-based probability curves were derived for all groups. Data are given in the body of paper. Age-based, risk-specific, and continuous distribution probability curves/responses guide in the creation of an injury assessment capability for military blast environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.