Visual-spatial attention is an essential brain function that enables us to select and preferentially process high priority information in the visual fields. Several brain areas have been shown to participate in the control of spatial attention in humans, but little is known about the underlying selection mechanisms. Non-invasive scalp recordings of event-related potentials (e.r.ps) in humans have shown that attended visual stimuli are preferentially selected as early as 80-90 ms after stimulus onset, but current e.r.p. methods do not permit a precise localization of the participating cortical areas. In this study we combined neuroimaging (positron emission tomography) with e.r.p. recording in order to describe both the cortical anatomy and time course of attentional selection processes. Together these methods showed that visual inputs from attended locations receive enhanced processing in the extrastriate cortex (fusiform gyrus) at 80-130 ms after stimulus onset. These findings reinforce early selection models of attention.
The neural mechanisms of hierarchical stimulus processing were investigated using a combined event-related potentials (ERPs) and positron emission tomography (PET) approach. Healthy subjects were tested under two conditions that involved selective or divided attention between local and global levels of hierarchical letter stimuli in order to determine whether and where hemispheric differences might exist in the processing of local versus global information. When attention was divided between global and local levels, the N2 component of the ERPs (260- to 360-msec latency) elicited by the target stimuli showed asymmetries in amplitude over the two hemispheres. The N2 to local targets was larger over the left hemisphere, but the N2 to global targets tended to be slightly larger over the right hemisphere. However, the shorter-latency, sensory-evoked P1 component (90- to 150-msec latency) was not different for global versus local targets under conditions of divided attention. In contrast, during selective attention to either global or local targets, asymmetries in the N2 component were not observed. But under selective attention conditions, the sensory-evoked P1 components in the extrastriate cortex were enlarged for global versus local attention. Increased regional cerebral blood flow in the posterior fusiform gyrus bilaterally was observed in the PET data during selective attention to either global or local targets, but neither these nor the P1 component showed any tendency toward hemispheric difference for global versus local attention. Neither were there any activations observed in the parietal lobe during selective attention to global versus local targets. Together these data indicate that early sensory inputs are not modulated to gate global versus local information differentially into the two hemispheres. Rather, later stages of processing that may be asymmetrically organized in the left and right hemispheres operate in parallel to process global and local aspects of complex stimuli (i.e., the N2 effect of the ERPs). This pattern of results supports models proposing that spatial frequency analysis is only asymmetric at higher stages of perceptual processing and not at the earliest stages of visual cortical analysis.
Dry electrode electroencephalogram (EEG) recording combined with wireless data transmission offers an alternative tool to conventional wet electrode EEG systems. However, the question remains whether the signal quality of dry electrode recordings is comparable to wet electrode recordings in the clinical context. We recorded the resting state EEG (rsEEG), the visual evoked potentials (VEP) and the visual P300 (P3) from 16 healthy subjects (age range: 26-79 years) and 16 neurological patients who reported subjective memory impairment (age range: 50-83 years). Each subject took part in two recordings on different days, one with 19 dry electrodes and another with 19 wet electrodes. They reported their preferred EEG system. Comparisons of the rsEEG recordings were conducted qualitatively by independent visual evaluation by two neurologists blinded to the EEG system used and quantitatively by spectral analysis of the rsEEG. The P100 visual evoked potential (VEP) and P3 event-related potential (ERP) were compared in terms of latency, amplitude and pre-stimulus noise. The majority of subjects preferred the dry electrode headset. Both neurologists reported that all rsEEG traces were comparable between the wet and dry electrode headsets. Absolute Alpha and Beta power during rest did not statistically differ between the two EEG systems (p > 0.05 in all cases). However, Theta and Delta power was slightly higher with the dry electrodes (p = 0.0004 for Theta and p < 0.0001 for Delta). For ERPs, the mean latencies and amplitudes of the P100 VEP and P3 ERP showed comparable values (p > 0.10 in all cases) with a similar spatial distribution for both wet and dry electrode systems. These results suggest that the signal quality, ease of setup and portability of the dry electrode EEG headset used in our study comply with the needs of clinical applications. The quality of scalp electroencephalogram (EEG) recordings critically depends on the connection between the amplifier input and the skin surface. Wet electrodes that rely on conductive gel to guarantee low impedance levels (<10 KOhm) remain the gold standard for clinical recordings. However, EEG recording with wet electrodes requires skin abrasion, gel application, impedance optimization and cleaning after recording, all of which are time consuming. Trained EEG technicians are therefore recommended for wet electrode EEG setup and acquisition (for instance, see 1-3). However, this presents a barrier to realising diagnostic strategies that propose replacing EEG recordings in the clinic or the doctor's office with EEG recordings in the patient's home, which saves both time and costs as well as improving the patient's health care and comfort 4,5. To achieve reliable home-based EEG recording, electrodes must be easy to apply and provide stable data quality over long recording sessions. The same standards hold for other applications, including repeated EEG
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.