Summary Reasons for performing study: The diagnosis of foot‐related lameness often remains elusive and it can be difficult to offer rational treatment, or to predict outcome. Objectives: To describe the spectrum of injuries of the foot identified using magnetic resonance imaging (MRI), to determine their relative prevalence among MRI diagnoses and to establish the long‐term results of treatment. Methods: The MR images of horses examined from January 2001‐December 2003 were reviewed. Horses were selected for MRI if the pain causing lameness was localised to the foot using perineural analgesia but any clinical, radiological or ultrasonographic abnormalities were insufficient to explain the degree of lameness. The clinical significance of lesions identified using MRI was determined with reference to the results of local analgesia, radiography, ultrasonography and nuclear scintigraphy. Follow‐up information was obtained in January 2004 for horses which had been examined 6‐36 months previously and the outcome classified as excellent (horse returned to full athletic function without recurrent lameness), moderate (sound, but only in light work), or poor (persistent or recurrent lameness). Results: One hundred and ninety‐nine horses underwent MRI examinations. Deep digital flexor (DDF) tendonitis was the most common injury (59%) with primary injury in 65 horses (33%) and a further 27 horses (14%) having lesions of the DDF tendon and navicular bone. Seventeen percent of horses had injuries to multiple structures, including 24 with DDF tendonitis. Desmitis of a collateral ligament (CL) of the distal interphalangeal (DIP) joint was the second most common injury (62 horses, 31%), with primary injuries in 30 horses (15%) and a further 32 horses (16%) that had CL desmitis in conjunction with other injuries. Prognosis was best for horses with traumatic injuries of the middle or distal phalanges, with 5 of 7 horses (71%) having an excellent outcome. Horses with primary lesions of the DDF tendon or CL of the DIP joint had excellent results in only 13 of 47 (28%) and 5 of 17 horses (29%), respectively. Horses with combined injuries of the DDF tendon and navicular bone, or primary navicular bone abnormalities, had a poor outcome, with the majority of horses suffering persistent lameness. Conclusions: A wide variety of lesions associated with foot pain were identified using MRI, a high proportion of which were primary soft tissue injuries with a guarded prognosis for return to full athletic function. Potential relevance: It is now possible to propose more rational treatment strategies for the variety of foot injuries identified using MRI than had previously been possible; however, further information concerning aetiopathogenesis of these injuries is needed to improve their management.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in gr...
Palmar foot pain is a common cause of lameness. Magnetic resonance imaging (MRI) has the potential to detect damage in all tissues of the equine foot, but an understanding of the differences in magnetic resonance (MR) images between feet from horses with and without palmar foot pain is required. This study aimed to describe MR findings in feet from horses with no history of foot-related lameness, and to compare these with MR findings in horses with lameness improved by palmar digital local analgesia. Thirty-four limbs from horses euthanized with a clinical diagnosis of navicular syndrome (ameness >2 months duration, positive response to palmar digital nerve blocks and absence of other forelimb problems) (Group L), and 25 feet from age-matched horses with no history of foot pain (Group N) were examined. For each anatomic structure, MR signal intensity and homogeneity, size, definition of margins, and relationships with other structures were described. Alterations in MR signal intensity and homogeneity were graded as mild, moderate, or severe and compared between Groups L and N. Results revealed that there were significant differences in MR images between Groups N and L. Multiple moderate-severe MR signal changes were present in 91% of limbs from Group L and moderate (none were graded severe) in 27% of limbs from Group N. In most Group L limbs, more than three structures and frequently six to eight structures were abnormal. Concomitant abnormalities involved most frequently the deep digital flexor tendon, distal sesamoidean impar ligament, navicular bone, collateral sesamoidean ligament, and navicular bursa (with significant associations in severity grade between these structures), sometimes with involvement of the distal interphalangeal joint and/or its collateral ligaments. It was concluded that findings on MR images were different between horses with and without foot pain, and that pain localized to the foot was associated with MR changes in a variety of structures, indicating that damage to several structures may occur concurrently and that MR imaging was useful for evaluation of foot pain.
Summary Reasons for performing study: The differential diagnosis of foot pain has long proved difficult and the use of magnetic resonance imaging (MRI) offers the opportunity to further the clinical understanding of the subject. Objectives: To determine the incidence of deep digital flexor tendon (DDFT) injuries in a series of 75 horses with lameness associated with pain localised to the digit, with no significant detectable radiographic or ultrasonographic abnormalities, using MRI; and to describe a variety of lesion types and relate DDF tendonitis with anamnesis, clinical features, response to local analgesic techniques and nuclear scintigraphic and ultrasonographic findings. Methods: All horses undergoing MRI of the front feet between January 2001 and October 2002 were reviewed and those with DDFT injuries categorised according to lesion type; horses with primary tendonitis (Group I) and those with concurrent abnormalities of the navicularbone considered to be an important component of the lameness (Group II). The response to perineural analgesia of the palmar digital nerves and palmar (abaxial sesamoid) nerves, intra‐articular analgesia of the distal interphalangeal (DIP) joint and analgesia of the navicularbursa were reviewed. The result of ultrasonography of the pastern and foot was recorded. Lateral, dorsal and solar pool and bone phase nuclear scintigraphic images were assessed subjectively and objectively using region of interest (ROI) analysis. Results: Forty‐six (61%) of 75 horses examined using MRI had lesions of the DDFT considered to be a major contributor to lameness. Thirty‐two horses (43%) had primary DDFT injuries and 14 (19%) a combination of DDF tendonitis and navicular bone pathology. Lesions involved the insertional region of the tendon alone (n = 3), were proximal to the navicular bone (n = 23) or were at a combination of sites (n = 20). Lesion types included core lesions, focal and diffuse dorsal border lesions, sagittal plane splits, insertional injuries and lesions combined with other soft tissue injuries. Many horses had a combination of lesion types. Lameness was abolished by palmar digital analgesia in only 11 of 46 horses (24%). Twenty‐one of 31 horses (68%) in Group I showed >50% improvement in lameness afterintra‐articular analgesia of the DIP joint, whereas 11 of 12 horses (92%) in Group II had a positive response. Twelve of 18 horses (67%) in Group I had a positive response to analgesia of the navicular bursa. Nineteen horses had lesions of the DDFT extending proximal to the proximal interphalangeal joint seen using MRI, but these were identified ultrasonographically in only 2 horses. Scintigraphic abnormalities suggestive of DDFT injury were seen in 16 of 41 horses (41%), 8 in pool phase images and 8 in bone phase images. Conclusions and potential relevance: DDFT injuries are an important cause of lameness associated with pain arising from the digit in horses without detectable radiographic abnormalities. Lameness is not reliably improved by palmar digital analgesia, but may...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.