Topologically nontrivial two-dimensional materials hold great promise for next-generation optoelectronic applications. However, measuring the Hall or spin-Hall response is often a challenge and practically limited to the ground state. An experimental technique for tracing the topological character in a differential fashion would provide useful insights. In this work, we show that circular dichroism angle-resolved photoelectron spectroscopy (ARPES) provides a powerful tool which can resolve the topological and quantum-geometrical character in momentum space. In particular, we investigate how to map out the signatures of the local Berry curvature by exploiting its intimate connection to the orbital angular momentum. A spin-resolved detection of the photoelectrons allows to extend the approach to spin-Chern insulators. Our predictions are corroborated by state-of-the art ab initio simulations employing time-dependent density functional theory, complemented with model calculations. The present proposal can be extended to address topological properties in materials out of equilibrium in a time-resolved fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.