Abstract-Design studies are an increasingly popular form of problem-driven visualization research, yet there is little guidance available about how to do them effectively. In this paper we reflect on our combined experience of conducting twenty-one design studies, as well as reading and reviewing many more, and on an extensive literature review of other field work methods and methodologies. Based on this foundation we provide definitions, propose a methodological framework, and provide practical guidance for conducting design studies. We define a design study as a project in which visualization researchers analyze a specific real-world problem faced by domain experts, design a visualization system that supports solving this problem, validate the design, and reflect about lessons learned in order to refine visualization design guidelines. We characterize two axes-a task clarity axis from fuzzy to crisp and an information location axis from the domain expert's head to the computer-and use these axes to reason about design study contributions, their suitability, and uniqueness from other approaches. The proposed methodological framework consists of 9 stages: learn, winnow, cast, discover, design, implement, deploy, reflect, and write. For each stage we provide practical guidance and outline potential pitfalls. We also conducted an extensive literature survey of related methodological approaches that involve a significant amount of qualitative field work, and compare design study methodology to that of ethnography, grounded theory, and action research.
Various case studies in different application domains have shown the great potential of visual parameter space analysis to support validating and using simulation models. In order to guide and systematize research endeavors in this area, we provide a conceptual framework for visual parameter space analysis problems. The framework is based on our own experience and a structured analysis of the visualization literature. It contains three major components: (1) a data flow model that helps to abstractly describe visual parameter space analysis problems independent of their application domain; (2) a set of four navigation strategies of how parameter space analysis can be supported by visualization tools; and (3) a characterization of six analysis tasks. Based on our framework, we analyze and classify the current body of literature, and identify three open research gaps in visual parameter space analysis. The framework and its discussion are meant to support visualization designers and researchers in characterizing parameter space analysis problems and to guide their design and evaluation processes.
Abstract-Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a "human in the loop" process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities.
Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.